89 research outputs found

    Adaptive optical networks using photorefractive crystals

    Get PDF
    The capabilities of photorefractive crystals as media for holographic interconnections in neural networks are examined. Limitations on the density of interconnections and the number of holographic associations which can be stored in photorefractive crystals are derived. Optical architectures for implementing various neural schemes are described. Experimental results are presented for one of these architectures

    Application of Ensemble Machines of Neural Networks to Chromosome Classification

    Get PDF
    This work presents approaches to the automatic classification of metaphase chromosomes using several perceptron neural network techniques on neural networks function as committee machines. To represent the banding patterns, only chromosome gray level profiles are exploited. The other inputs to the ensemble machines of the network are the chromosome size and centromeric index. It is shown that, without much effort, the classification performances of the four networks are found to be similar to the ones of a well-developed parametric classifier. Four parallel networks trained for the four different aspects of the data set, the gray level profile vector, Fourier coefficients of gray level profiles, 3D data of chromosome length – centromeric index – total gray levels, and 4D data obtained by the addition of average gray levels. Then the classification results of differently trained neural networks (i.e., experts), are combined by the use of a genuine ensemble-averaging to produce an overall output by the combiner. We discuss the flexibility of the classifier developed, its potential for development, and how it may be improved to suit the current needs in karyotyping

    On the analysis of local and global features for hyperemia grading

    Get PDF
    In optometry, hyperemia is the accumulation of blood flow in the conjunctival tissue. Dry eye syndrome or allergic conjunctivitis are two of its main causes. Its main symptom is the presence of a red hue in the eye that optometrists evaluate according to a scale in a subjective manner. In this paper, we propose an automatic approach to the problem of hyperemia grading in the bulbar conjunctiva. We compute several image features on images of the patients' eyes, analyse the relations among them by using feature selection techniques and transform the feature vector of each image to the value in the adequate range by means of machine learning techniques. We analyse different areas of the conjunctiva to evaluate their importance for the diagnosis. Our results show that it is possible to mimic the experts' behaviour through the proposed approach.S

    Sharp Lower Bounds on Interpolation by Deep ReLU Neural Networks at Irregularly Spaced Data

    Full text link
    We study the interpolation power of deep ReLU neural networks. Specifically, we consider the question of how efficiently, in terms of the number of parameters, deep ReLU networks can interpolate values at NN datapoints in the unit ball which are separated by a distance δ\delta. We show that Ω(N)\Omega(N) parameters are required in the regime where δ\delta is exponentially small in NN, which gives the sharp result in this regime since O(N)O(N) parameters are always sufficient. This also shows that the bit-extraction technique used to prove lower bounds on the VC dimension cannot be applied to irregularly spaced datapoints. Finally, as an application we give a lower bound on the approximation rates that deep ReLU neural networks can achieve for Sobolev spaces at the embedding endpoint

    Automatic text summarization of konkani texts using pre-trained word embeddings and deep learning

    Get PDF
    Automatic text summarization has gained immense popularity in research. Previously, several methods have been explored for obtaining effective text summarization outcomes. However, most of the work pertains to the most popular languages spoken in the world. Through this paper, we explore the area of extractive automatic text summarization using deep learning approach and apply it to Konkani language, which is a low-resource language as there are limited resources, such as data, tools, speakers and/or experts in Konkani. In the proposed technique, Facebook’s fastText pre-trained word embeddings are used to get a vector representation for sentences. Thereafter, deep multi-layer perceptron technique is employed, as a supervised binary classification task for auto-generating summaries using the feature vectors. Using pre-trained fastText word embeddings eliminated the requirement of a large training set and reduced training time. The system generated summaries were evaluated against the ‘gold-standard’ human generated summaries with recall-oriented understudy for gisting evaluation (ROUGE) toolkit. The results thus obtained showed that performance of the proposed system matched closely to the performance of the human annotators in generating summaries
    • …
    corecore