62,205 research outputs found

    Challenges and Lessons Learned in the Application of Autonomy to Space Operations

    Get PDF
    NASA's Space Operations Management Office (SOMO) is working toward a goal of providing an integrated infrastructure of mission and data services for space missions undertaken by NASA enterprises. A significant portion of this effort is focused on reducing the cost of these services. We are interested in the potential of autonomy to reduce operations costs. SOMO services support space missions, but are not part of the mission objectives; therefore the level of acceptable risk is very low. In fact, SOMO could be effective ly prevented from applying autonomy if customers merely perceive it as adding risk to their mission(s). We are interested in this workshop from the standpoint of understanding what can be done to realize the potential cost savings due to autonomy while maintaining acceptable risk and serving the needs of our customers. We would like to present our lessons learned so far in adopting autonomy and automation, which we think will contribute to clarifying the challenges facing the use of such technology. SOMO provides services to a diverse and ambitious set of mission customers. Many of these missions are groundbreaking missions for which communications, data, and other operations requirements sometimes cannot be clearly articulated early in the program. This motivates a need for systems that are robust in the face of unanticipated situations so that customer missions are not unreasonably constrained or impacted by "shortcomings" in SOMO services. One of SOMO's primary goals is to realize a paradigm in which SOMO acts as a service provider to organizations that fly space missions for NASA, other government agencies, and even the commercial sector. These organizations purchase SOMO services "by the pound" as customers. We have to provide systems that are not experiments themselves, but rather stable bases from which to do bold experiments. To this end, SOMO also seeks to work closely with industry to see that robust autonomy technology gets infused into products and services for the space industry and beyond. The potential for application of these technologies spans space-based communications networks (e.g. TDRSS) and ground-based assets including communication and tracking antenna systems, data networks, and control centers. There are several problems that are candidates for the application of autonomy, if it can be made reliable enough, including: antenna control, antenna scheduling, communication link scheduling and operation, navigation, attitude determination, fault detection, isolation, and reconfiguration (for spacecraft or ground assets), and mission-level planning and scheduling. Some attempts have been made to apply autonomy and automation in these areas in the past with varying degrees of success. We will present relevant case histories and the lessons inferred from them. Combining this past experience with anticipated future needs, we can clarify the challenges that must be met in order to realize the benefits of autonomy

    Space Human Factors Engineering Gap Analysis Project Final Report

    Get PDF
    Humans perform critical functions throughout each phase of every space mission, beginning with the mission concept and continuing to post-mission analysis (Life Sciences Division, 1996). Space missions present humans with many challenges - the microgravity environment, relative isolation, and inherent dangers of the mission all present unique issues. As mission duration and distance from Earth increases, in-flight crew autonomy will increase along with increased complexity. As efforts for exploring the moon and Mars advance, there is a need for space human factors research and technology development to play a significant role in both on-orbit human-system interaction, as well as the development of mission requirements and needs before and after the mission. As part of the Space Human Factors Engineering (SHFE) Project within the Human Research Program (HRP), a six-month Gap Analysis Project (GAP) was funded to identify any human factors research gaps or knowledge needs. The overall aim of the project was to review the current state of human factors topic areas and requirements to determine what data, processes, or tools are needed to aid in the planning and development of future exploration missions, and also to prioritize proposals for future research and technology development

    The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements

    Get PDF
    In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation

    Overview of MSFC Additive Electronics Capabilities

    Get PDF
    Focus: Marshall seeks to support the Agency in the development of next generation printed electronics technologies for living and working in space, with emphasis on enhanced electronics manufacturing processes and capabilities development on the ground and in-space. Near-Term: Human Habitation Elements and Life Support Systems - pursuing integrated flexible wearable air, water, vital monitoring solutions for next generation printed technologies; Complete startup printing technology demonstrations which prove basic processes and establish ISM (In-Space Manufacturing) infrastructure needed for future applications including metals based manufacturing. Medium Term: Target low-cost research and demonstration activities that support multi-material additive manufacturing, more sophisticated parts production, printed electronics and ISM; Maturation and flight demonstration of printed propulsion system components, with emphasis on infusion into small-spacecraft-based missions. Long-Term: Evolve systems capabilities to be supportive of destination (lunar or Mars) resources and requirements, increase autonomy in systems and utilize in-situ resources towards manufacturing; Support development of self-replicable systems and their infusion into future spacecraft and missions

    Autonomic Management of Space Missions

    Get PDF
    With NASA s renewed commitment to outer space exploration, greater emphasis is being placed on both human and robotic exploration. Even when humans are involved in the exploration, human tending of assets becomes cost-prohibitive or in many cases is simply not feasible. In addition, certain exploration missions will require spacecraft that will be capable of venturing where humans cannot be sent. Early space missions were operated manually from ground control centers with little or no automated operations. In the mid-l980s, the high costs of satellite operations prompted NASA, and others, to begin automating as many functions as possible. In our context, a system is autonomous if it can achieve its goals without human intervention. A number of more-or-less automated ground systems exist today, but work continues with the goal being to reduce operations costs to even lower levels. Cost reductions can be achieved in a number of areas. Ground control and spacecraft operations are two such areas where greater autonomy can reduce costs. As a consequence, autonomy is increasingly seen as a critical approach for robotic missions and for some aspects of manned missions. Although autonomy will be critical for the success of future missions (and indeed will enable certain kinds of science data gathering approaches), missions imbued with autonomy must also exhibit autonomic properties. Exploitation of autonomy alone, without emphasis on autonomic properties, will leave spacecraft vulnerable to the dangerous environments in which they must operate. Without autonomic properties, a spacecraft may be unable to recognize negative environmental effects on its components and subsystems, or may be unable to take any action to ameliorate the effects. The spacecraft, though operating autonomously, may then sustain a degradation of performance of components or subsystems, and consequently may have a reduced potential for achieving mission objectives. In extreme cases, lack of autonomic properties could leave the spacecraft unable to recover from faults. Ensuring that exploration spacecraft have autonomic properties will increase the survivability and therefore the likelihood of success of these missions. In fact, over time, as mission requirements increased demands on spacecraft capabilities and longevity, designers have gradually built more autonomicity into spacecraft. For example, a spacecraft in low-earth orbit may experience an out-of-bounds perturbation of its attitude (orientation) due to increased drag caused by increased atmospheric density at its altitude as a result of a sufficiently large solar flare. If the spacecraft was designed to recognize the excessive attitude perturbation, it could decide to protect itself by going into a safe-hold mode where its internal configuration and operation are altered to conserve power and its coarse attitude is adjusted to point its solar panels toward the Sun to maximize power generation. This is an example of a simple type of autonomic behavior that has actually occurred. Future mission concepts will be increasingly dependent on space system survivability enabled by more advanced types of autonomic behavior

    AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    Get PDF
    The Autonomous Mission Operations project is investigating crew autonomy capabilities and tools for deep space missions. Team members at Ames Research Center, Johnson Space Center and Marshall Space Flight Center are using their experience with ISS Payload operations and TIMELINER to: move earth based command and control assets to on-board for crew access; safely merge core and payload command procedures; give the crew single action intelligent operations; and investigate crew interface requirements

    Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Get PDF
    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted

    Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Get PDF
    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted

    Mission Control Concepts for Robotic Operations: Existing approaches and new Solutions

    Get PDF
    This paper gives a preliminary overview on activities within the currently ongoing Mission Control Concepts for Robotic Operations (MICCRO) study. The aim of the MICCRO study is to reveal commonalities in the operations of past, current and future robotic space missions in order to find an abstract, representative mission control concept applicable to multiple future missions with robotic systems involved. The existing operational concepts, responsibilities and information flows during the different mission phases are taken into account. A particular emphasis is put on the possible interaction between different autonomous components (on-board and on-ground), their synchronisation and the possible shift of autonomy borders during different mission phases
    corecore