research

Challenges and Lessons Learned in the Application of Autonomy to Space Operations

Abstract

NASA's Space Operations Management Office (SOMO) is working toward a goal of providing an integrated infrastructure of mission and data services for space missions undertaken by NASA enterprises. A significant portion of this effort is focused on reducing the cost of these services. We are interested in the potential of autonomy to reduce operations costs. SOMO services support space missions, but are not part of the mission objectives; therefore the level of acceptable risk is very low. In fact, SOMO could be effective ly prevented from applying autonomy if customers merely perceive it as adding risk to their mission(s). We are interested in this workshop from the standpoint of understanding what can be done to realize the potential cost savings due to autonomy while maintaining acceptable risk and serving the needs of our customers. We would like to present our lessons learned so far in adopting autonomy and automation, which we think will contribute to clarifying the challenges facing the use of such technology. SOMO provides services to a diverse and ambitious set of mission customers. Many of these missions are groundbreaking missions for which communications, data, and other operations requirements sometimes cannot be clearly articulated early in the program. This motivates a need for systems that are robust in the face of unanticipated situations so that customer missions are not unreasonably constrained or impacted by "shortcomings" in SOMO services. One of SOMO's primary goals is to realize a paradigm in which SOMO acts as a service provider to organizations that fly space missions for NASA, other government agencies, and even the commercial sector. These organizations purchase SOMO services "by the pound" as customers. We have to provide systems that are not experiments themselves, but rather stable bases from which to do bold experiments. To this end, SOMO also seeks to work closely with industry to see that robust autonomy technology gets infused into products and services for the space industry and beyond. The potential for application of these technologies spans space-based communications networks (e.g. TDRSS) and ground-based assets including communication and tracking antenna systems, data networks, and control centers. There are several problems that are candidates for the application of autonomy, if it can be made reliable enough, including: antenna control, antenna scheduling, communication link scheduling and operation, navigation, attitude determination, fault detection, isolation, and reconfiguration (for spacecraft or ground assets), and mission-level planning and scheduling. Some attempts have been made to apply autonomy and automation in these areas in the past with varying degrees of success. We will present relevant case histories and the lessons inferred from them. Combining this past experience with anticipated future needs, we can clarify the challenges that must be met in order to realize the benefits of autonomy

    Similar works