4 research outputs found

    Uma arquitetura de componentes híbridos de hardware e software para sistemas embarcados

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Ciência da Computação, Florianópolis, 2009.Sistemas embarcados estão tornando-se mais complexos, enquanto métricas como tempo de projeto, confiabilidade, segurança e desempenho devem ser consideradas durante o processo de projeto destes sistemas. Frequentemente, tais sistemas demandam um projeto integrado de hardware e software para garantir que as métricas definidas para o mesmo sejam atingidas. Desta forma, uma metodologia de desenvolvimento baseado em componentes que possam migrar entre os domínios de hardware e software beneficia o processo de desenvolvimento destes sistemas. Adicionalmente, um projeto baseado em abstrações de alto-nível cooperam para uma melhor exploração do espaço de projeto, através de combinações distintas de hardware e software. Este trabalho propõem o uso de componentes híbridos de hardware e software como um artefato de desenvolvimento que pode ser instanciado através de diferentes combinações de implementações em hardware e software. Apresenta-se uma arquitetura para o desenvolvimento destes componentes, baseada no padrão de comportamento dos componentes, permitindo que estes migrem entre diferentes combinações de hardware e software, atendendo da melhor forma os requisitos das aplicações que os utilizam. De forma a avaliar a arquitetura proposta, três componentes foram implementados, seguindo os padrões de comportamento identificados, e uma série de experimentos foram realizados para avaliar o desempenho desta arquitetura. Os resultados obtidos demonstram que a arquitetura proposta atinge seus objetivos, impondo um sobrecusto baixo no sistema

    Real-time operating system support for multicore applications

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia de Automação e Sistemas, Florianópolis, 2014Plataformas multiprocessadas atuais possuem diversos níveis da memória cache entre o processador e a memória principal para esconder a latência da hierarquia de memória. O principal objetivo da hierarquia de memória é melhorar o tempo médio de execução, ao custo da previsibilidade. O uso não controlado da hierarquia da cache pelas tarefas de tempo real impacta a estimativa dos seus piores tempos de execução, especialmente quando as tarefas de tempo real acessam os níveis da cache compartilhados. Tal acesso causa uma disputa pelas linhas da cache compartilhadas e aumenta o tempo de execução das aplicações. Além disso, essa disputa na cache compartilhada pode causar a perda de prazos, o que é intolerável em sistemas de tempo real críticos. O particionamento da memória cache compartilhada é uma técnica bastante utilizada em sistemas de tempo real multiprocessados para isolar as tarefas e melhorar a previsibilidade do sistema. Atualmente, os estudos que avaliam o particionamento da memória cache em multiprocessadores carecem de dois pontos fundamentais. Primeiro, o mecanismo de particionamento da cache é tipicamente implementado em um ambiente simulado ou em um sistema operacional de propósito geral. Consequentemente, o impacto das atividades realizados pelo núcleo do sistema operacional, tais como o tratamento de interrupções e troca de contexto, no particionamento das tarefas tende a ser negligenciado. Segundo, a avaliação é restrita a um escalonador global ou particionado, e assim não comparando o desempenho do particionamento da cache em diferentes estratégias de escalonamento. Ademais, trabalhos recentes confirmaram que aspectos da implementação do SO, tal como a estrutura de dados usada no escalonamento e os mecanismos de tratamento de interrupções, impactam a escalonabilidade das tarefas de tempo real tanto quanto os aspectos teóricos. Entretanto, tais estudos também usaram sistemas operacionais de propósito geral com extensões de tempo real, que afetamos sobre custos de tempo de execução observados e a escalonabilidade das tarefas de tempo real. Adicionalmente, os algoritmos de escalonamento tempo real para multiprocessadores atuais não consideram cenários onde tarefas de tempo real acessam as mesmas linhas da cache, o que dificulta a estimativa do pior tempo de execução. Esta pesquisa aborda os problemas supracitados com as estratégias de particionamento da cache e com os algoritmos de escalonamento tempo real multiprocessados da seguinte forma. Primeiro, uma infraestrutura de tempo real para multiprocessadores é projetada e implementada em um sistema operacional embarcado. A infraestrutura consiste em diversos algoritmos de escalonamento tempo real, tais como o EDF global e particionado, e um mecanismo de particionamento da cache usando a técnica de coloração de páginas. Segundo, é apresentada uma comparação em termos da taxa de escalonabilidade considerando o sobre custo de tempo de execução da infraestrutura criada e de um sistema operacional de propósito geral com extensões de tempo real. Em alguns casos, o EDF global considerando o sobre custo do sistema operacional embarcado possui uma melhor taxa de escalonabilidade do que o EDF particionado com o sobre custo do sistema operacional de propósito geral, mostrando claramente como diferentes sistemas operacionais influenciam os escalonadores de tempo real críticos em multiprocessadores. Terceiro, é realizada uma avaliação do impacto do particionamento da memória cache em diversos escalonadores de tempo real multiprocessados. Os resultados desta avaliação indicam que um sistema operacional "leve" não compromete as garantias de tempo real e que o particionamento da cache tem diferentes comportamentos dependendo do escalonador e do tamanho do conjunto de trabalho das tarefas. Quarto, é proposto um algoritmo de particionamento de tarefas que atribui as tarefas que compartilham partições ao mesmo processador. Os resultados mostram que essa técnica de particionamento de tarefas reduz a disputa pelas linhas da cache compartilhadas e provê garantias de tempo real para sistemas críticos. Finalmente, é proposto um escalonador de tempo real de duas fases para multiprocessadores. O escalonador usa informações coletadas durante o tempo de execução das tarefas através dos contadores de desempenho em hardware. Com base nos valores dos contadores, o escalonador detecta quando tarefas de melhor esforço o interferem com tarefas de tempo real na cache. Assim é possível impedir que tarefas de melhor esforço acessem as mesmas linhas da cache que tarefas de tempo real. O resultado desta estratégia de escalonamento é o atendimento dos prazos críticos e não críticos das tarefas de tempo real.Abstracts: Modern multicore platforms feature multiple levels of cache memory placed between the processor and main memory to hide the latency of ordinary memory systems. The primary goal of this cache hierarchy is to improve average execution time (at the cost of predictability). The uncontrolled use of the cache hierarchy by realtime tasks may impact the estimation of their worst-case execution times (WCET), specially when real-time tasks access a shared cache level, causing a contention for shared cache lines and increasing the application execution time. This contention in the shared cache may leadto deadline losses, which is intolerable particularly for hard real-time (HRT) systems. Shared cache partitioning is a well-known technique used in multicore real-time systems to isolate task workloads and to improve system predictability. Presently, the state-of-the-art studies that evaluate shared cache partitioning on multicore processors lack two key issues. First, the cache partitioning mechanism is typically implemented either in a simulated environment or in a general-purpose OS (GPOS), and so the impact of kernel activities, such as interrupt handlers and context switching, on the task partitions tend to be overlooked. Second, the evaluation is typically restricted to either a global or partitioned scheduler, thereby by falling to compare the performance of cache partitioning when tasks are scheduled by different schedulers. Furthermore, recent works have confirmed that OS implementation aspects, such as the choice of scheduling data structures and interrupt handling mechanisms, impact real-time schedulability as much as scheduling theoretic aspects. However, these studies also used real-time patches applied into GPOSes, which affects the run-time overhead observed in these works and consequently the schedulability of real-time tasks. Additionally, current multicore scheduling algorithms do not consider scenarios where real-time tasks access the same cache lines due to true or false sharing, which also impacts the WCET. This thesis addresses these aforementioned problems with cache partitioning techniques and multicore real-time scheduling algorithms as following. First, a real-time multicore support is designed and implemented on top of an embedded operating system designed from scratch. This support consists of several multicore real-time scheduling algorithms, such as global and partitioned EDF, and a cache partitioning mechanism based on page coloring. Second, it is presented a comparison in terms of schedulability ratio considering the run-time overhead of the implemented RTOS and a GPOS patched with real-time extensions. In some cases, Global-EDF considering the overhead of the RTOS is superior to Partitioned-EDF considering the overhead of the patched GPOS, which clearly shows how different OSs impact hard realtime schedulers. Third, an evaluation of the cache partitioning impacton partitioned, clustered, and global real-time schedulers is performed.The results indicate that a lightweight RTOS does not impact real-time tasks, and shared cache partitioning has different behavior depending on the scheduler and the task's working set size. Fourth, a task partitioning algorithm that assigns tasks to cores respecting their usage of cache partitions is proposed. The results show that by simply assigning tasks that shared cache partitions to the same processor, it is possible to reduce the contention for shared cache lines and to provideHRT guarantees. Finally, a two-phase multicore scheduler that provides HRT and soft real-time (SRT) guarantees is proposed. It is shown that by using information from hardware performance counters at run-time, the RTOS can detect when best-effort tasks interfere with real-time tasks in the shared cache. Then, the RTOS can prevent best effort tasks from interfering with real-time tasks. The results also show that the assignment of exclusive partitions to HRT tasks together with the two-phase multicore scheduler provides HRT and SRT guarantees, even when best-effort tasks share partitions with real-time tasks

    Projeto unificado de componentes em hardware e software para sistemas embarcados

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Ciência da Computação, Florianópolis, 2013.O crescente aumento na complexidade dos sistemas embarcados está ocasionando uma migração para técnicas de projeto em níveis mais altos de abstração, o que tem levado a uma convergência entre as metodologias de desenvolvimento de hardware e software. Este trabalho tem como objetivo principal contribuir nesse cenário propondo uma estratégia de desenvolvimento unificada que possibilita a implementação de componentes em hardware e software a partir de uma única descrição na linguagem C++. As técnicas propostas se baseiam em conceitos de programação orientada a objetos (do inglês Object-oriented Programming - OOP) e programação orientada a aspectos (do inglês Aspect-oriented Programming - AOP) para guiar uma estratégia de engenharia de domínio que facilita a clara separação entre a estrutura e comportamento-base de um componente das características que são específicas de implementações em hardware ou software.Certos aspectos de um componente, como, por exemplo, alocação de recursos e a interface de comunicação, são modelados de maneiras distintas dependendo da implementação-alvo (hardware ou software). Este trabalho mostra como tais aspectos podem ser fatorados e encapsulados em programas de aspecto que são aplicados às descrições iniciais apenas quando o particionamento final entre hardware e software é definido. Os mecanismos de aplicação de aspectos são definidos via metaprogramação estática utilizando os templates do C++. Dessa forma, a extração de implementações em hardware ou software a partir de uma implementação unificada em C++ é direta e se dá através de transformações no nível da linguagem suportadas por uma grande gama de compiladores e ferramentas de síntese de alto-nível (do inglês High-level Synthesis - HLS). Para avaliar a abordagem proposta, foi desenvolvida uma plataforma flexível para implementação de System-on-Chips (SoCs) em dispositivos lógico programáveis. A infraestrutura de hardware/software desenvolvida utiliza uma arquitetura baseadas em Network-on-Chips (NoCs) para prover um mecanismo de comunicação transparente entre hardware e software. A avaliação dos mecanismos propostos foi feita através da implementação de um SoC para aplicações PABX. Os resultados mostraram que a estratégia proposta resulta em componentes flexíveis e reusáveis com uma eficiência muito próxima a de componentes implementados especificamente para software ou hardware.Abstract : The increasing complexity of current embedded systems is pushing their design to higher levels of abstraction, leading to a convergence between hardware and software design methodologies. In this work we aim at narrowing the gap between hardware and software design by introducing a strategy that handles both domains in a unified fashion. We leverage on Aspect-oriented Programming (AOP) and Object-oriented Programming (OOP) techniques in order to provide unified C++ descriptions of embedded system components. Such unified descriptions can be obtained through a careful design process focused on isolating aspects that are specific of hardware and software scenarios. Aspects that differ significantly in each domain, such as resource allocation and communication interface, were isolated in aspect programs that are applied to the unified descriptions before they are compiled to software binaries or synthesized to dedicated hardware using High-level Synthesis (HLS) tools. Furthermore, we propose a flexible FPGA-based SoC platform for the deployment of SoCs in a HLS-capable environment. The proposed hardware/software infrastructure relies on a Network-on-Chip-based architecture to provide transparent communication mechanisms for hardware and software components. The proposed unified design approach and its transparent communication mechanisms are evaluated through the implementation of a SoC for digital PABX systems. The results show that our strategy leads to reusable and flexible components at the cost of an acceptable overhead when compared to software-only C/C++ and hardware-only C++ implementations

    On the automatic generation of soc-based embedded systems

    No full text
    The growing complexity of embedded applications has motivated system designers to search for methods and tools that enable the automatic generation of embedded systems. This paper outlines a strategy for generating customized run-time support systems and specific hardware platforms for dedicated applications. Based on the Application-Oriented System Design methodology, the approached strategy proposes the use of Hardware Mediators—an original portability artifact—as the basis for creating IP-based SoCs that match, in association with a run-time support system, the requirements of dedicated applications. The several steps involved in this process are presented in a detailed case study using an experimental application-oriented operating system instance. 1
    corecore