6 research outputs found

    The Sampling-and-Learning Framework: A Statistical View of Evolutionary Algorithms

    Full text link
    Evolutionary algorithms (EAs), a large class of general purpose optimization algorithms inspired from the natural phenomena, are widely used in various industrial optimizations and often show excellent performance. This paper presents an attempt towards revealing their general power from a statistical view of EAs. By summarizing a large range of EAs into the sampling-and-learning framework, we show that the framework directly admits a general analysis on the probable-absolute-approximate (PAA) query complexity. We particularly focus on the framework with the learning subroutine being restricted as a binary classification, which results in the sampling-and-classification (SAC) algorithms. With the help of the learning theory, we obtain a general upper bound on the PAA query complexity of SAC algorithms. We further compare SAC algorithms with the uniform search in different situations. Under the error-target independence condition, we show that SAC algorithms can achieve polynomial speedup to the uniform search, but not super-polynomial speedup. Under the one-side-error condition, we show that super-polynomial speedup can be achieved. This work only touches the surface of the framework. Its power under other conditions is still open

    Performance Analysis of Evolutionary Algorithms for the Minimum Label Spanning Tree Problem

    Get PDF
    Some experimental investigations have shown that evolutionary algorithms (EAs) are efficient for the minimum label spanning tree (MLST) problem. However, we know little about that in theory. As one step towards this issue, we theoretically analyze the performances of the (1+1) EA, a simple version of EAs, and a multi-objective evolutionary algorithm called GSEMO on the MLST problem. We reveal that for the MLSTb_{b} problem the (1+1) EA and GSEMO achieve a b+12\frac{b+1}{2}-approximation ratio in expected polynomial times of nn the number of nodes and kk the number of labels. We also show that GSEMO achieves a (2ln(n))(2ln(n))-approximation ratio for the MLST problem in expected polynomial time of nn and kk. At the same time, we show that the (1+1) EA and GSEMO outperform local search algorithms on three instances of the MLST problem. We also construct an instance on which GSEMO outperforms the (1+1) EA

    On the approximation ability of evolutionary optimization with application to minimum set cover

    Get PDF
    Evolutionary algorithms (EAs) are heuristic algorithms inspired by natural evolution. They are often used to obtain satisficing solutions in practice. In this paper, we investigate a largely underexplored issue: the approximation performance of EAs in terms of how close the solution obtained is to an optimal solution. We study an EA framework named simple EA with isolated population (SEIP) that can be implemented as a single- or multi-objective EA. We analyze the approximation performance of SEIP using the partial ratio, which characterizes the approximation ratio that can be guaranteed. Specifically, we analyze SEIP using a set cover problem that is NP-hard. We find that in a simple configuration, SEIP efficiently achieves an HnH_n-approximation ratio, the asymptotic lower bound, for the unbounded set cover problem. We also find that SEIP efficiently achieves an (Hk−k−1/8k9)(H_k-\frac{k-1}/{8k^9})-approximation ratio, the currently best-achievable result, for the k-set cover problem. Moreover, for an instance class of the k-set cover problem, we disclose how SEIP, using either one-bit or bit-wise mutation, can overcome the difficulty that limits the greedy algorithm
    corecore