388 research outputs found

    On the approximability of robust spanning tree problems

    Get PDF
    In this paper the minimum spanning tree problem with uncertain edge costs is discussed. In order to model the uncertainty a discrete scenario set is specified and a robust framework is adopted to choose a solution. The min-max, min-max regret and 2-stage min-max versions of the problem are discussed. The complexity and approximability of all these problems are explored. It is proved that the min-max and min-max regret versions with nonnegative edge costs are hard to approximate within O(log1ϵn)O(\log^{1-\epsilon} n) for any ϵ>0\epsilon>0 unless the problems in NP have quasi-polynomial time algorithms. Similarly, the 2-stage min-max problem cannot be approximated within O(logn)O(\log n) unless the problems in NP have quasi-polynomial time algorithms. In this paper randomized LP-based approximation algorithms with performance ratio of O(log2n)O(\log^2 n) for min-max and 2-stage min-max problems are also proposed

    Fault-Tolerant Shortest Paths - Beyond the Uniform Failure Model

    Full text link
    The overwhelming majority of survivable (fault-tolerant) network design models assume a uniform scenario set. Such a scenario set assumes that every subset of the network resources (edges or vertices) of a given cardinality kk comprises a scenario. While this approach yields problems with clean combinatorial structure and good algorithms, it often fails to capture the true nature of the scenario set coming from applications. One natural refinement of the uniform model is obtained by partitioning the set of resources into faulty and secure resources. The scenario set contains every subset of at most kk faulty resources. This work studies the Fault-Tolerant Path (FTP) problem, the counterpart of the Shortest Path problem in this failure model. We present complexity results alongside exact and approximation algorithms for FTP. We emphasize the vast increase in the complexity of the problem with respect to its uniform analogue, the Edge-Disjoint Paths problem

    Bicriteria Network Design Problems

    Full text link
    We study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a <subgraph \from a given subgraph-class that minimizes the second objective subject to the budget on the first. We consider three different criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, we develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same %(note that the cost functions continue to be different) we present a ``black box'' parametric search technique. This black box takes in as input an (approximation) algorithm for the unicriterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs we use a cluster-based approach to devise a approximation algorithms --- the solutions output violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. We show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.Comment: 24 pages 1 figur
    corecore