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a b s t r a c t

In this paper theminimumspanning tree problemwith uncertain edge costs is discussed. In
order to model the uncertainty a discrete scenario set is specified and a robust framework
is adopted to choose a solution. The min–max, min–max regret and 2-stage min–max
versions of the problem are discussed. The complexity and approximability of all these
problems are explored. It is proved that the min–max and min–max regret versions with
nonnegative edge costs are hard to approximatewithinO(log1−ϵ n) for any ϵ > 0unless the
problems in NP have quasi-polynomial time algorithms. Similarly, the 2-stage min–max
problem cannot be approximated within O(log n) unless the problems in NP have quasi-
polynomial time algorithms. In this paper randomized LP-based approximation algorithms
with performance bound ofO(log2 n) formin–max and 2-stagemin–max problems are also
proposed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The usual assumption in combinatorial optimization is that all input parameters are precisely known. However, in real
life this is rarely the case. There are two popular optimization settings of problems for hedging against uncertainty of
parameters: stochastic optimization setting and robust optimization setting.

In the stochastic optimization, the uncertainty is modeled by specifying probability distributions of the parameters and
the goal is to optimize the expected value of a solution built (see, e.g., [7,22]). One of themost popularmodels of the stochastic
optimization is a 2-stage model [7]. In the 2-stage approach the precise values of the parameters are specified in the first
stage, while the values of these parameters in the second stage are uncertain and are specified by probability distributions.
The goal is to choose a part of a solution in the first stage and complete it in the second stage so that the expected value
of the obtained solution is optimized. Recently, there has been a growing interest in combinatorial optimization problems
formulated in the 2-stage stochastic framework [9,10,12,16,21].

In the robust optimization setting [17] the uncertainty is modeled by specifying a set of all possible realizations of the
parameters called scenarios. No probability distribution in the scenario set is given. In the discrete scenario case, which is
considered in this paper, we define a scenario set by explicitly listing all scenarios. Then, in order to choose a solution, two
optimization criteria, called themin–max and themin–max regret, can be adopted. Under the min–max criterion, we seek a
solution thatminimizes the largest cost over all scenarios. Under themin–max regret criterionwewish to find a solution that
minimizes the largest deviation from optimum over all scenarios. A deeper discussion on both criteria can be found in [17].
The min–max (regret) versions of some basic combinatorial optimization problems with discrete structure of uncertainty
have been extensively studied in the recent literature [2,3,14,19]. Furthermore, both robust criteria can be easily extended
to the 2-stage framework. Such an extension has been recently done in [8,16].
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In this paper, we wish to investigate the min–max (regret) and min–max 2-stage versions of the classical minimum
spanning tree problem. The classical deterministic problem is formally stated as follows.We are given a connected graphG =
(V , E) with edge costs ce, e ∈ E. We seek a spanning tree of G of the minimal total cost. We use Φ to denote the set of all
spanning trees of G. The classical deterministic minimum spanning tree is a well studied problem, for which several very
efficient algorithms exist (see, e.g., [1]).

In the robust framework, the edge costs are uncertain and the set of scenariosΓ is defined by explicitly listing all possible
edge cost vectors. So, Γ = {S1, . . . , SK } is finite and contains exactly K scenarios, where a scenario is a cost realization
S = (cSe )e∈E . In this paper we consider the unbounded case, where the number of scenarios is a part of the input. We will
denote by C∗(S) = minT∈Φ

∑
e∈T c

S
e the cost of a minimum spanning tree under a fixed scenario S ∈ Γ . In the Min–max

Spanning Tree problem, we seek a spanning tree that minimizes the largest cost over all scenarios, that is

OPT1 = min
T∈Φ

max
S∈Γ

−
e∈T

cSe . (1)

In theMin–max Regret Spanning Tree, we wish to find a spanning tree that minimizes the maximal regret:

OPT2 = min
T∈Φ

max
S∈Γ

−
e∈T

cSe − C∗(S)


. (2)

The formulation (1) is a single-stage decision one. We can extend this formulation to a 2-stage case as follows. We are
given the first stage edge costs ce, e ∈ E, and in the second stage there are K possible cost realizations (scenarios) listed
in scenario set Γ . The 2-stage Spanning Tree problem consists in determining a subset of edges E1 in the first stage and a
subset of edges ES

2 that augments it to form a spanning tree T S
= E1 ∪ ES

2 ∈ Φ under scenario S in the second stage for each
scenario S ∈ Γ . The goal is minimize the maximum cost of the determined subsets of edges E1, E

S1
2 , . . . , ESK

2 :

OPT3 = min
E1,E

S1
2 ,...,E

SK
2

max
S∈Γ

−
e∈E1

ce +
−
e∈ES2

cSe : T
S
= E1 ∪ ES

2 ∈ Φ

 . (3)

Let us now recall some known results on the problems under consideration. In the bounded case (when the number of
scenarios is bounded by a constant), the Min–max (Regret) Spanning Tree problem is NP-hard even if Γ contains only 2
scenarios [17] and admits an FPTAS [3], whose running time, however, grows exponentially with K . In the unbounded case,
theMin–max (Regret) Spanning Treeproblem is stronglyNP-hard [2,17] andnot approximablewithin (2−ϵ), for any ϵ > 0,
unless P = NP even for edge series-parallel graphs [14]. The Min–max (Regret) Spanning Tree problem is approximable
within K [3]. However, up to now the existence of an approximation algorithm with a constant performance ratio for the
unbounded case has been an open question. To the best of the authors’ knowledge the 2-stage version of the minimum
spanning tree problem seems to exist only in the stochastic setting [9,10,12]. Recently, the robust 2-stage framework has
been employed in [8,16] for some network design and matching problems.

Our results. In this paper we prove that the Min–max Spanning Tree and Min–max Regret Spanning Tree problems are
hard to approximate with a constant performance ratio (Theorem 3 and Corollary 1). Namely, they are are not approximable
within O(log1−ϵ n) for any ϵ > 0, where n is the input size, unless NP⊆ DTIME(npoly log n). We thus give a negative answer to
the open question about the existence of approximation algorithms with a constant performance ratio for these problems.
Moreover, if both positive and negative edge costs are allowed, then the Min–max Spanning Tree problem is not at all
approximable unless P = NP (Theorem 4). For the 2-stage Spanning Tree problem, we show that it is not approximable
within any constant, unless P = NP, and within (1 − ϵ) ln n for any ϵ > 0, unless NP ⊆ DTIME(nlog log n) (Theorem 6). The
above negative results encourage us to find randomized approximation algorithms that yield a O(log2 n) approximation
ratio forMin–max Spanning Tree (Theorem 5) and 2-Stage min–max Spanning Tree (Theorem 7).

2. Min–max (regret) spanning tree

In this section, we study the Min–max Spanning Tree and Min–max Regret Spanning Tree problems. We improve the
results obtained in [2,14], by showing that both problems are hard to approximatewithin a ratio ofO(log1−ϵ n) for any ϵ > 0,
unless the problems inNP have quasi-polynomial time algorithms.We then provide an LP-based randomized algorithmwith
approximation ratio of O(log2 n) for Min–max Spanning Tree.

2.1. Hardness of approximation

We reduce a variant of the Label Cover problem (see e.g., [5,19]) toMin–max Spanning Tree.

Label cover: Input: A regular bipartite graph G = (V ,W , E), E ⊆ V ×W ; an integer N that defines the set of labels, which
are integers in {1, . . . ,N}; for every edge (v, w) ∈ E a partial function σv,w : {1, . . . ,N} → {1, . . . ,N}. A labeling



A. Kasperski, P. Zieliński / Theoretical Computer Science 412 (2011) 365–374 367

Fig. 1. Replacing edge (v, w) ∈ E with component Gv,w .

Fig. 2. A sample of graph G′ , where graph G in L is K3,3 .

of the instance L = (G,N, {σv,w}(v,w)∈E) is a function l assigning a nonempty set of labels to each vertex in V ∪W ,
namely l : V ∪W → 2N . A labeling satisfies an edge (v, w) ∈ E if

∃a ∈ l(v), ∃b ∈ l(w) : σv,w(a) = b.

A total labeling is a labeling that satisfies all edges. The value of a total labeling l is maxx∈V∪W |l(x)|.
Output: A total labeling of the minimum value. This value is denoted by val(L).

We now recall the following theorem [5,19]:

Theorem 1. There exists a constant γ > 0 so that for any language L ∈ NP, any input w and N > 0, one can construct an
instance L of Label Cover, with |w|O(logN) vertices and the label set of size N, so that:

w ∈ L⇒ val(L) = 1,
w ∉ L⇒ val(L) ≥ Nγ .

Furthermore, L can be constructed in time polynomial in its size.

We now state and prove a theorem which is essential in showing the hardness results for the problems of interest.

Theorem 2. There exists a constant γ > 0 so that for any language L ∈ NP, any input w, any N > 0 and any g ≤ Nγ , one can
construct an instance T of Min–max Spanning Tree in time O(|w|O(g logN)NO(g)), so that:

w ∈ L⇒ OPT1(T ) ≤ 1,
w ∉ L⇒ OPT1(T ) ≥ g.

Proof. Let L be a language in NP and let L = (G = (V ,W , E),N, {σv,w}(v,w)∈E) be the instance of Label Cover from
Theorem 1 constructed for L. Let us introduce some additional notations:

• δ(x) is the set of edges of G incident to vertex x ∈ V ∪W ,
• Nv,w = {(a, b) ∈ N × N : σv,w(a) = b}.

We now transform L to an instance T of Min–max Spanning Tree. Let us fix g ≤ Nγ , where γ is the constant from
Theorem 1. We first construct graph G′ in the following way. We replace every edge (v, w) ∈ E with paths (v, uv,w

a,b , wv) for
all (a, b) ∈ Nv,w (see Fig. 1). The edges of the form (uv,w

a,b , wv) (the dashed edges) are called dummy edges and the edges of the
form (v, uv,w

a,b ) (the solid edges) are called label edges. We say that label edge (v, uv,w
a,b ) assigns label a to v and label b to w.

We will denote the obtained component by Gv,w and we will use E l
v,w to denote the set of all label edges of Gv,w , obviously

|E l
v,w| = |Nv,w|. We finish the construction of G′ by an adding additional vertex s and connecting all the components by

additional dummy edges (s, v) for all v ∈ V . A sample graph G′, where G is K3,3, is shown in Fig. 2.
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We now form scenario set Γ . We first note that all dummy edges under all scenarios have costs equal to 0. We say that
two label edges are label-distinct if they do not assign the same label to any vertex v or w. Namely, (v, uv,w

ai,bi
) and (v′, uv′,w′

a′i,b
′
i
)

are label-distinct if ai = a′i implies v ≠ v′ and bi = b′i implies w ≠ w′. Consider vertex v ∈ V , for which there is the set of
p = |δ(v)| components G = {Gv,w1 , . . . ,Gv,wp}. For every subset F ⊆ G of exactly g components, F = {Gv,w1 , . . . ,Gv,wg }

and for every g-tuple of pairwise label-distinct edges ((v, uv,w1
a1,b1

), . . . , (v, uv,wg
ag ,bg )) ∈ E l

v,w1
× · · · × E l

v,wg
we form a scenario

under which all these edges have cost 1 and all the remaining edges have cost 0. We repeat this procedure for all vertices
v ∈ V . Consider then vertex w ∈ W , for which there is the set of q = |δ(w)| components G = {Gv1,w, . . . ,Gvq,w}. For
every subset F ⊆ G of exactly g components, F = {Gv1,w, . . . ,Gvg ,w} and for every g-tuple of pairwise label-distinct edges
((v1, u

v1,w
a1,b1

), . . . , (vg , u
vg ,w

ag ,bg )) ∈ E l
v1,w
× · · · × E l

vg ,w we form a scenario under which all these edges have cost 1 and all the
remaining edges have cost 0. We repeat this for all vertices w ∈ W . In order to ensure Γ ≠ ∅, we add to Γ the scenario in
which every edge has zero cost.

Assume that w ∈ L and thus val(L) = 1. Thus, there exists a total labeling l satisfying all edges in G such that
maxx∈V∪W |l(x)| = 1. Each edge (vi, wi) ∈ E in G corresponds to exactly one component Gvi,wi in G′. Let (ai, bi) be the
pair of labels satisfying the edge (vi, wi) in total labeling l, i.e. ai ∈ l(vi) and bi ∈ l(wi). We form a spanning tree T in G′ by
adding exactly one edge (vi, u

vi,wi
ai,bi

) from every component Gvi,wi and we complete the construction by adding a necessary
number of dummy edges. Since the labeling l is such that maxx∈V∪W |l(x)| = 1, no pair of label-distinct edges have been
chosen while constructing T , so

∑
e∈T c

S
e ≤ 1 for all S ∈ Γ and consequently maxS∈Γ

∑
e∈T c

S
e ≤ 1.

Assume that w /∈ L and thus maxx∈V∪W |l(x)| ≥ Nγ
≥ g for all total labellings l. Consider any spanning tree T in G′.

Without loss of generality, we can assume that T contains exactly one label edge from every component Gv,w . The set of all
label edges contained in T corresponds to a total labeling l of L. Since |l(x)| ≥ g , for some vertex x ∈ V ∪W , we have to use
at least g distinct labels in the labeling l. Suppose that x = v ∈ V andwe use distinct labels a1, . . . , ag for v. Then, T contains
pairwise label-distinct edges (v, uv,wi

ai,bi
), i = 1, . . . , g , and

∑
e∈T c

S
e = g under scenario S that correspond to this g-tuple of

edges. The reasoning for x = w, w ∈ W is the same. In consequence maxS∈Γ
∑

e∈T c
S
e = g and OPT1(T ) = g .

Let us now examine the size of the resulting instance of theMin–max Spanning Tree problem. The size of the set of edges
E ′ is at most |V | + 2|E|N2, the size of the set of vertices V ′ is at most 1+ |V | + |E|N2

+ |W ||V | and the number of scenarios
is at most 1 + 2|E|gNgNg . Hence, and from |E| = |w|O(logN), we deduce that the size of the constructed instance (G′, Γ ) is
|w|O(g logN)NO(g), so it can be constructed in O(|w|O(g logN)NO(g)) time. �

From Theorem 2, we obtain the following result:

Theorem 3. TheMin–max Spanning Tree problem with nonnegative edge costs under all scenarios is not approximable within
O(log1−ϵ n) for any ϵ > 0, where n is the input size, unless NP⊆ DTIME(npoly log n).

Proof. Let γ be the constant from Theorem 2. For any β > 0 we fix g = logβ
|w| and N = logO(β)

|w|, so that inequality
g ≤ Nγ is satisfied for the constant γ (see Theorem 2). The input size of the resulting instance (G′, Γ ) from Theorem 2
is n = |w|O(g logN)NO(g)

= |w|O(logβ+δ
|w|) for some constant δ > 0, so it can be constructed in O(|w|poly log |w|) time. Since

g = logβ
|w| and n = 2O(logβ+δ+1

|w|), we get g = O(log
β

β+δ+1 n) and the gap is O(log1−ϵ n) for any ϵ > 0. �

Corollary 1. The Min–max Regret Spanning Tree problem is not approximable within O(log1−ϵ n) for any ϵ > 0, where n is
the input size, unless NP⊆ DTIME(npoly log n).

Proof. The corollary follows easily if we assume that each component Gv,w in the construction from Theorem 2 has at least
2 label edges or, equivalently, every edge in the instance of Label Cover has at least two pairs of labels. In this case, under
every scenario S ∈ Γ , there is a spanning tree of 0 cost (recall that we never assign two 1’s to the same component in S).
Hence OPT1(T ) = OPT2(T ) and the proof is completed. If some edge in the instance of Label Cover has only one pair of
labels, then this pair trivially forces an assignment of labels to two vertices, which (after checking consistency with other
edges) can be removed from the instance before applying the construction from Theorem 2. �

Up to this point we have assumed that the edge costs under all scenarios are nonnegative. The following theorem
demonstrates that violation of this assumption makes theMin–max Spanning Tree problem not at all approximable:

Theorem 4. If both positive and negative costs are allowed, then theMin–max Spanning Tree problem is not at all approximable
unless P= NP even for edge series-parallel graphs.

Proof. We show a gap-introducing reduction from3-SAT [13].Wewill assume that in an instance of 3-SAT for every variable
xk, k = 1, . . . , n, both xk and∼ xk appear in collection C = {C1, . . . , Cm} of clauses. Obviously, under such assumption 3-SAT
remains strongly NP-complete. Given an instance of 3-SATwe construct an instance ofMin–max Spanning Tree as follows.
For each clause Ci = (l1i ∨ l2i ∨ l3i )we create a graph Gi composed of 5 vertices: si, vi

1, v
i
2, v

i
3, ti and 6 edges: the edges (si, vi

1),
(si, vi

2), (si, v
i
3) correspond to literals in Ci, the edges (vi

1, ti), (v
i
2, ti), (v

i
3, ti) have costs equal to−1 under every scenario. In

order to construct a connected graph G = (V , E) with |V | = 4m + 1, |E| = 6m, we identify vertex ti of Gi with vertex si+1
of Gi+1 for i = 1, . . .m−1. Note that the resulting graph G is edge series-parallel. Finally, we form scenario set Γ as follows.
For every pair of edges of G, (si, vi

j) and (sq, v
q
r ), that correspond to contradictory literals lji and lrq, i.e. l

j
i =∼ lrq, we create
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scenario S such that under this scenario the costs of the edges (si, vi
j) and (sq, v

q
r ) are set to 4m − 1 and the costs of all the

remaining edges are set to −1. It is easy to verify that each spanning tree T in the constructed instance has nonnegative
maximal cost over all scenarios.

Suppose that 3-SAT is satisfiable. Then there exists a spanning tree T of G containing exactly 4m edges that do not
correspond to contradictory literals. Thus, under every scenario S, the tree contains at most one edge with the cost 4m− 1
and all the remaining 4m − 1 edges have costs equal to −1. In consequence we get

∑
e∈T c

S
e = 0 under every S ∈ Γ

and OPT1 = 0. If 3-SAT is unsatisfiable, then every spanning trees T of G contains at least two edges which correspond to
contradictory literals, and so OPT1 = maxS∈Γ

∑
e∈T c

S
e ≥ 4m. Consequently Min–max Spanning Tree is not approximable,

unless P= NP. Otherwise, any polynomial time approximation algorithm applied to the constructed instance could decide
if an instance of 3-SAT is satisfiable. �

2.2. Randomized algorithm for min–max spanning tree

If the edge costs are nonnegative under all scenarios, then the Min–max Spanning Tree problem is approximable
within K , K is the number of scenarios, and this is the best approximation ratio known so far [3]. On the other hand the
problem is not at all approximable if negative costs are allowed (Theorem 4). In this section, we assume that all costs
are nonnegative and we give a polynomial time approximation algorithm for the problem which returns an O(log2 n)-
approximate spanning tree, where n is the number of vertices of G. The algorithm is based on a randomized rounding of
a solution to an iterative linear program.

It is easy to check that binary solutions to the following program LPminmax(C) are in one-to-one correspondence with
solutions toMin–max Spanning Tree of edge costs in every scenario at most C:

LPminmax(C) :
−
e∈E

cSe xe ≤ C ∀S∈Γ , (4)−
e∈E

xe = n− 1, (5)−
e∈δ(W )

xe ≥ 1 ∀W⊂V , (6)

0 ≤ xe ≤ 1 ∀e∈E, (7)
if cSe > C then xe = 0 ∀e∈E and ∀S∈Γ , (8)

where δ(W ) denotes the cut determined by vertex set W , i.e. δ(W ) = {(i, j) ∈ E : i ∈ W , j ∈ V \ W }. The core of
LPminmax(C) (constraints (5)–(7)) is the relaxation of the cut-set formulation for spanning tree [18]. The polynomial time
solvability of LPminmax(C) follows from an efficient polynomial time separation based on the min-cut problem (see [18]).
Solving LPminmax(C) consists in rejecting all edges e ∈ E having cSe > C under some scenario S ∈ Γ and solving then the
resulting linear programming problem. Using binary search in [0, (n − 1)cmax], where cmax = maxe∈E maxS∈Γ cSe , one can
find the minimal value of parameter C , for which there is a feasible solution to LPminmax(C). LetC be this minimal value and
let (x̂e)e∈E be a feasible solution to LPminmax(C). ClearlyC ≤ OPT1. Furthermore, if x̂e > 0, then cSe ≤ C and thus cSe ≤ OPT1
for each scenario S ∈ Γ .

We nowgive an algorithm that randomly rounds a feasible solution of LPminmax(C) to anO(log2 n)-approximatemin–max
spanning tree (see Algorithm 1).

Algorithm 1: Randomized algorithm forMin–max Spanning Tree
Use binary search in [0, (n− 1)cmax] to find the minimal value of C such that there exists a feasible solution to
LPminmax(C), i.e.,C and (x̂e)e∈E .
Initially F̂ contains only vertices of G, that is n components.
r ←


2

11+

√
21

ln n


for k← 1 to r do

For all e ∈ E, add edge e independently with probability x̂e to F̂ .
if F̂ is connected then

exit for-loop

if F̂ is connected then
return a spanning tree of F̂

Let us analyze Algorithm 1. Obviously the algorithm is polynomial. The following lemma shows that the total cost of
edges included in each iteration under any scenario S ∈ Γ is O(ln n)OPT1 with probability at least 1− 1

n :
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Lemma 1. Let Êk be a set of edges added to F̂ at iteration k of Algorithm 1 and let K ≤ nρ2 , 1 ≤ f ≤ nρ3 , where f , ρ1, ρ2, ρ3 are
nonnegative constants such that ρ2 + ρ3 ≤ ((e− 1

2 )
2
− 1)ρ1 ≈ 3.92 · ρ1, ρ1 ≥ 2. Then

max
S∈Γ

−
e∈Êk

cSe ≤ (ρ1 ln n+ 1.5)


1+ 2


1+

ln K + ln f
ρ1 ln n


OPT1 (9)

holds with probability at least 1− 1
fnρ1−1

.

Proof. See Appendix.

We now analyze the feasibility of an output solution F̂ . Let F̂k be the forest obtained from F̂k−1 after the k-th iteration.
Initially, F̂0, F̂0 ⊂ G, has no edges. Let Ck denote the number of connected components of F̂k. Obviously, C0 = n. We say that
an iteration k is ‘‘successful’’ if either Ck−1 = 1 (F̂k−1 is connected) or Ck < 0.9Ck−1; otherwise, it is ‘‘failure’’. We now recall
a result of Alon [4]. His proof is repeated in Appendix for completeness.

Lemma 2 (Alon [4]). For every k, the conditional probability that iteration k is ‘‘successful’’, given any set of components in F̂k−1,
is at least 1/2.

From Lemma 2, it follows that the probability of the event that iteration k is ‘‘successful’’ is at least 1/2. This is a lower
bound on the probability of success of given any history. Note that, if forest F̂k is not connected (Ck > 1) then the number
of ‘‘successful’’ iterations has been less than − log0.9 n < 10 ln n. Let X be a random variable denoting the number of
‘‘successful’’ iterations among r performed iterations of the algorithm. The probability Pr[X < 10 ln n] can be upper bounded
by Pr[Y < 10 ln n], where Y =

∑r
k=1 Yk is the sum of r independent Bernoulli trials such that Pr[Yk = 1] = 1/2. This

estimation can be done, since we have a lower bound on success of given any history. Clearly, E[Y] = r/2. We apply
the Chernoff bound (see for instance [20]) and determine the values of δ ∈ (0, 1] and r in order to fulfill the following
inequality:

Pr[X < 10 ln n] ≤ Pr[Y < 10 ln n] = Pr[Y < (1− δ)E[Y]] < e−E[Y]δ
2/2
=

1
n
. (10)

It is easily seen that inequality (10) holds if the following system of equations
(1− δ)r/2 = 10 ln n,
rδ2/4 = ln n

(11)

holds true. An easy computation for δ and r in (11), shows that r = 2(11+
√
21) ln n, δ =


2

11+
√
21
. Hence, after r iterations,

r = ⌈2(11+
√
21) ln n⌉, we obtain with probability at least 1− 1/n a spanning tree. By the union bound and Lemma 1 (set

f = r), with probability at least 1− 1/n in every iteration, k = 1, . . . , r , the set of edges Êk included at iteration k satisfies
the bound (9). We conclude that after r iterations, we get with probability at least 1− 2/n a spanning tree whose total cost
in every scenario is O(r ln n)OPT1. We have, thus proved the following theorem:

Theorem 5. There is a polynomial time randomized algorithm for Min–max Spanning Tree that returns with probability at least
1− 2

n a solution whose total cost in every scenario is O(log2 n)OPT1.

3. 2-stage spanning tree

In this section,we discuss the 2-stage spanning tree problem in a robust optimization setting.We show that the problem
is hard to approximate within a ratio of O(log n) unless the problems in NP have quasi-polynomial algorithms. Then,we give
an LP-based randomized approximation algorithm with ratio of O(log2 n).

3.1. Hardness of approximation

Theorem 6. The 2-Stage Spanning Tree problem is not approximablewithin any constant, unless P=NP, andwithin (1−ϵ) ln n
for any ϵ > 0, unless NP⊆ DTIME(nlog log n).

Proof. We proceed with a cost preserving reduction from Set Cover to 2-Stage Spanning Tree. The reduction is similar to
that in [12] for the 2-stage stochastic spanning tree. Set Cover is defined as follows (see, e.g., [5,13]):

Set Cover: Input: A ground set U = {1, . . . , n} and a collection of its subsets U1, . . . ,Um such that
m

i=1 Ui = U.
A subcollection I ⊆ {1, . . . ,m} covers U if


i∈I Ui = U, where |I| is the size of the subcollection.

Output: A minimum sized subcollection that covers U.
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The Set Cover problem is not approximable within any constant, unless P= NP, and within (1− ϵ) log n for any ϵ > 0,
unless NP ⊆ DTIME(nlog log n), where n is the size of the ground set (see [6,11]). For a given instance C = (U,U1, . . . ,Um)
of Set Cover, we construct an instance T = (G = (V , E), Γ ) of 2-Stage Spanning Tree as follows. Graph G = (V , E)
is a complete graph with m + n + 1 vertices V = {u1, . . . , um, 1, . . . , n, r}. Vertices u1, . . . , um correspond to m subsets
U1, . . . ,Um, vertices 1, . . . , n correspond to n elements of set U. The costs of the edges (r, ui), i = 1, . . . ,m, in G in the
first stage are set to 1 and the costs of all the remaining edges in G are set to m + 1. Now we form scenario set Γ in the
second stage. Each scenario Sj ∈ Γ corresponds to vertex j, j = 1, . . . , n. Let Tj = {j} ∪ {ui : j ∈ Ui} and let (Tj, V \ Tj) be
the cut separating Tj from all other vertices of G. Each second stage scenario Sj is defined as: the costs of the edges from cut
(Tj, V \ Tj) are set tom+ 1 and the costs of the remaining edges in G are set to 0.

We now prove that there is a subcollection of size at most k ≤ m that covers U if and only if there exists a spanning tree
in G of the maximum 2-stage cost at most k ≤ m. Given a subcollection Ui1 , . . . ,Uik of size k that covers U. In the first stage,
we include in E1 the edges (r, uij), where vertices uij correspond to subsets Uij , j = 1, . . . , k. The cost of E1 is equal to k. In
the second stage, we augment E1 to form a spanning tree with edges of cost zero in each scenario Sj, j = 1, . . . , n. Hence, the
maximum 2-stage cost of the obtained spanning tree equals k. Conversely, let T be a spanning tree in Gwith the maximum
2-stage cost at most k. Hence, this tree does not contain any edge with cost m+ 1. Consequently, in the first stage the tree
contains k′ ≤ k edges of the form (r, uij), j = 1, . . . , k′, and in the second stage in each scenario it contains zero cost edges.
The vertices uij correspond to subsets Uij , j = 1, . . . , k′. It is easily seen that any element i ∈ U must be covered by at least
one of subsets Uij , j = 1, . . . , k′. Otherwise the solution would contain an edge of costm+ 1. Thus, Uij , j = 1, . . . , k′, form a
subcollection of the size at most k that covers U.

The presented reduction is cost preserving. Hence, 2-Stage Spanning Tree has the same approximation bounds as Set
Cover. �

3.2. Randomized algorithm for 2-stage spanning tree

In this section we construct a randomized approximation algorithm for 2-Stage Spanning Tree, which is based on a
similar idea as the corresponding algorithm forMin–max Spanning Tree (see Section 2.2). Consider the following program
LP2stage(C), whose binary solutions correspond to the solutions of 2-Stage Spanning Tree:

LP2stage(C) :
−
e∈E

cexe +
−
e∈E

cSe x
S
e ≤ C ∀S∈Γ−

e∈E

(xe + xSe) = n− 1 ∀S∈Γ−
e∈δ(W )

(xe + xSe) ≥ 1 ∀W⊂V ,∀S∈Γ

0 ≤ xe, xSe ≤ 1 ∀e∈E,∀S∈Γ
if ce > C then xe = 0 ∀e∈E
if cSe > C then xSe = 0 ∀e∈E,∀S∈Γ .

The algorithm (Algorithm 2) randomly rounds a feasible solution x̂e, x̂Se , S ∈ Γ , e ∈ E, of LP2stage(C), whereC denotes the
minimal value of C for which there is a feasible solution to LP2stage(C).

Algorithm 2: Randomized algorithm for 2-stage Spanning Tree

cmax ← maxe∈E{ce,maxS∈Γ cSe }
Use binary search in [0, (n− 1)cmax] to find the minimal value of C such that there exists a feasible solution of
LP2stage(C), i.e., x̂e, x̂Se , S ∈ Γ , e ∈ E.
Initially F̂ S contains only vertices of G for S ∈ Γ .
r ←

√
ln n+ ln K +

√
21 ln n+ ln K

2
for k← 1 to r do

In the first stage: For all e ∈ E, choose edge e independently with probability x̂e and add it to each F̂ S for S ∈ Γ .
In the second stage: for every S ∈ Γ and every e ∈ E, add edge e independently with probability x̂Se to F̂ S .

if all F̂ S, S ∈ Γ , are connected then
return {F̂ S

}S∈Γ

An analysis of Algorithm 2 proceeds similarly to the one of Algorithm 1. The following lemma holds (the proof goes in
similar manner to the proof of Lemma 1):
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Lemma 3. Let Êk and ÊS
k be the sets of edges in the first stage and in the second stage for every S ∈ Γ , respectively, added

to F̂ S at iteration k of Algorithm 2 and let K ≤ nρ2 , 1 ≤ f ≤ nρ3 , where f , ρ1, ρ2, ρ3 are nonnegative constants such that
ρ2 + ρ3 ≤ ((e− 1

2 )
2
− 1)ρ1 ≈ 3.92 · ρ1, ρ1 ≥ 2. Then

−
e∈Êk

ce +
−
e∈ÊSk

cSe ≤ (ρ1 ln n+ 1.5)


1+ 2


1+

ln K + ln f
ρ1 ln n


OPT3 ∀S∈Γ (12)

holds with probability at least 1− 1
fnρ1−1

.

Let F̂ S
k be the forest for S ∈ Γ after the k-th iteration of Algorithm 2, Let CS

k denote the number of connected components
of F̂ S

k . Again, we say that an iteration k is ‘‘successful’’ if either CS
k−1 = 1 or CS

k < 0.9CS
k−1; otherwise it is ‘‘failure’’. The

probability of the event that iteration k is ‘‘successful’’ is at least 1/2, which is due to Lemma 2.
Consider any scenario S ∈ Γ . If forest F̂ S

k is not connected then the number of ‘‘successful’’ iterations is less than
− log0.9 n < 10 ln n. We estimate Pr[X < 10 ln n] by Pr[Y < 10 ln n], where X is random variable denoting the number
of ‘‘successful’’ iterations among r iterations and Y =

∑r
k=1 Yk is the sum of r independent Bernoulli trials such that

Pr[Yk = 1] = 1/2, E[Y] = r/2. We use the Chernoff bound and compute the values of δ ∈ (0, 1] and r satisfying the
following inequality:

Pr[X < 10 ln n] ≤ Pr[Y < 10 ln n] = Pr[Y < (1− δ)E[Y]] < e−E[Y]δ
2/2
=

1
nK

. (13)

This gives r = (
√
ln n+ ln K +

√
21 ln n+ ln K)2 and δ = 2

√
ln n+ln K

√
ln n+ln K+

√
21 ln n+ln K

. Recall that K is the number of scenarios.
By the union bound, the probability that a forest in at least one scenario S is not connected is less than 1/n. Again,
by the union bound and Lemma 3 (set f = r), with probability at least 1 − 1/n in every k iteration, k = 1, . . . , r ,
the sets of edges Êk and ÊS

k for each S ∈ Γ , included at iteration k, satisfy the bound (12). Thus, after r iterations,
r = ⌈(

√
ln n+ ln K +

√
21 ln n+ ln K)2⌉, with probability at least 1− 2/n, we obtain spanning trees of cost O(r ln n)OPT3

in every scenario. We get the following theorem:

Theorem 7. There is a polynomial time randomized algorithm for 2-stage Minimum Spanning Tree that returns with
probability at least 1− 2

n a spanning tree whose cost in every scenario is O(log2 n)OPT3.

4. Conslusions

In this paper we have investigated three different robust models of the minimum spanning tree problem with discrete
unbounded scenario set. All of them are strongly NP-hard and hard to approximate within a constant factor. There are
still some open questions concerning these problems. The Min–max Spanning Tree problem with nonnegative costs is
not approximable within O(log1−ϵ n) but it admits a randomized O(log2 n)-approximation algorithm. So, the existence of
an O(log n)-approximation algorithm (deterministic or randomized) for this problem is still an open question. A similar
situation holds for the 2-stage Spanning Tree with min–max criterion. For Min–max Regret Spanning Tree we only have
negative results. It is not easy to modify the randomized algorithms designed in this paper for themin–max regret criterion.
So, the construction of better approximation algorithms for the min–max regret version of the minimum spanning tree is
an interesting subject for further research.
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Appendix. Some proofs

Proof of Lemma 1. In order to prove the bound (9), we will apply a technique used in [16,15]. Consider any scenario S ∈ Γ .
Let us sort the costs in S in nonincreasing order cSe[1] ≥ cSe[2] ≥ · · · ≥ cSe[m], (m is the number of edges of G). We partition
the ordered set of edges E into groups as follows. The first group G(1) consists of edges e[1], . . . , e[j(1)], where j(1) is the
maximum such that x̂e[1] + · · · + x̂e[j(1)] ≤ ρ1 ln n. The subsequent groups G(l), l = 2, . . . , t , are defined in the same way,
that is G(l) consists of edges e[j(l−1) + 1], . . . , e[j(l)], where j(l) is the maximum such that x̂e[j(l−1)+1] + · · · + x̂e[j(l)] ≤ ρ1 ln n.
The optimal value OPT1 satisfies:

OPT1 ≥C ≥ m−
i=1

cSe[i]x̂e[i] ≥
t−

l=1


min
e∈G(l)

cSe

 −
e∈G(l)

x̂e


≥ (ρ1 ln n− 1)

t−1−
l=1

min
e∈G(l)

cSe . (14)
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Let Xe be a binary random variable with Pr[Xe = 1] = x̂e. It holds that−
e∈Êk

cSe ≤
t−

l=1

−
e∈G(l)

cSeXe ≤

t−
l=1

−
e∈G(l)


max
e∈G(l)

cSe


Xe

≤


max
e∈G(1)

cSe

 −
e∈G(1)

Xe +

t−
l=2


min

e∈G(l−1)
cSe

 −
e∈G(l)

Xe


. (15)

Let us recall a Chernoff bound (see e.g., [20]). Suppose X1, . . . ,XN are independent Poisson trials such that Pr[Xi = 1] = pi.
Let X =

∑N
i=1 Xi. Then the inequality holds: Pr[X > E[X](1 + δ)] < e−E[X]δ

2/4 for any δ ≤ 2e − 1. We use this Chernoff
bound to estimate

∑
e∈G(l) Xe in each group G(l). Consider a group G(l). It holds that E[

∑
e∈G(l) Xe] =

∑
e∈G(l) x̂e ≤ ρ1 ln n. Set

δ = 2
√

(ρ1 ln n+ ln K + ln f )/(ρ1 ln n). Since K ≤ nρ2 , 1 ≤ f ≤ nρ3 and ρ2 + ρ3 ≤ ((e− 1/2)2 − 1)ρ1, ρ1 ≥ 2, inequality
δ ≤ 2e− 1 holds. Thus the Chernoff bound yields:

Pr

−
e∈G(l)

Xe > ρ1 ln n(1+ δ)


< e−(ρ1 ln n+ln K+ln f )

= 1/(fKnρ1). (16)

By the union bound, the probability that
∑

e∈G(l) Xe > ρ1 ln n(1+ δ) holds for at least one group G(l) is less than 1/(fKnρ1−1)
(because the number of groups is at most n). Now applying the bound

∑
e∈G(l) Xe ≤ ρ1 ln n(1+ δ) for every l = 1, . . . , t to

(15) and using the fact that maxe∈G(1) cSe ≤ OPT1 and inequality (14) we obtain:−
e∈Êk

cSe ≤ ρ1 ln n


1+ 2


ρ1 ln n+ ln K + ln f

ρ1 ln n


OPT1 +

OPT1
ρ1 ln n− 1


.

The fact that ρ1 ln n/(ρ1 ln n − 1) ≤ 3/2, n ≥ 5, and an easy computation show that:
∑

e∈Êk
cSe ≤ (ρ1 ln n +

1.5)

1+ 2


1+ ln K+ln f

ρ1 ln n


OPT1. The probability that the bound fails for a given scenario S is less than 1/(fKnρ1−1) so, by

the union bound, the probability that it fails for at least one scenario S ∈ Γ is less than 1/(fnρ1−1). �

Proof of Lemma 2. If F̂k−1 is connected thenwe are done. Otherwise, let us denote byH = (VH , EH) the graph obtained from
F̂k−1 by contracting all its connected components to a single vertex. An edge e is not included in F̂k with probability 1− x̂e.
Hence, the probability that any vertex v of H remains isolated is∏

e∈δ(v)

(1− x̂e) ≤ exp


−

−
e∈δ(v)

(1− x̂e)


≤ 1/e,

where δ(v) denotes the set of edges incident to v. The last inequality follows from the fact that
∑

e∈δ(v)(1 − x̂e) ≥ 1. By
linearity of expectation, the expected number of isolated vertices of H is |VH |/e, and thus with the probability at least 1/2
the number of isolated vertices is at most 2|VH |/e. Hence, the number of connected components of F̂k is at most

2|VH |

e
+

1
2


|VH | −

2|VH |

e


=


1
2
+

1
e


|VH | < 0.9|VH |.

Since |VH | = Ck−1, the lemma follows. �
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