91 research outputs found

    Understanding Economic Change

    Get PDF

    Mathematical Modelling in Engineering & Human Behaviour 2018

    Get PDF
    This book includes papers in cross-disciplinary applications of mathematical modelling: from medicine to linguistics, social problems, and more. Based on cutting-edge research, each chapter is focused on a different problem of modelling human behaviour or engineering problems at different levels. The reader would find this book to be a useful reference in identifying problems of interest in social, medicine and engineering sciences, and in developing mathematical models that could be used to successfully predict behaviours and obtain practical information for specialised practitioners. This book is a must-read for anyone interested in the new developments of applied mathematics in connection with epidemics, medical modelling, social issues, random differential equations and numerical methods

    Finding the Limits of the Limes

    Get PDF
    This open access book demonstrates the application of simulation modelling and network analysis techniques in the field of Roman studies. It summarizes and discusses the results of a 5-year research project carried out by the editors that aimed to apply spatial dynamical modelling to reconstruct and understand the socio-economic development of the Dutch part of the Roman frontier (limes) zone, in particular the agrarian economy and the related development of settlement patterns and transport networks in the area. The project papers are accompanied by invited chapters presenting case studies and reflections from other parts of the Roman Empire focusing on the themes of subsistence economy, demography, transport and mobility, and socio-economic networks in the Roman period. The book shows the added value of state-of-the-art computer modelling techniques and bridges computational and conventional approaches. Topics that will be of particular interest to archaeologists are the question of (forced) surplus production, the demographic and economic effects of the Roman occupation on the local population, and the structuring of transport networks and settlement patterns. For modellers, issues of sensitivity analysis and validation of modelling results are specifically addressed. This book will appeal to students and researchers working in the computational humanities and social sciences, in particular, archaeology and ancient history

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio

    Material-based design computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 306-328).The institutionalized separation between form, structure and material, deeply embedded in modernist design theory, paralleled by a methodological partitioning between modeling, analysis and fabrication, resulted in geometric-driven form generation. Such prioritization of form over material was carried into the development and design logic of CAD. Today, under the imperatives and growing recognition of the failures and environmental liabilities of this approach, modern design culture is experiencing a shift to material aware design. Inspired by Nature's strategies where form generation is driven by maximal performance with minimal resources through local material property variation, the research reviews, proposes and develops models and processes for a material-based approach in computationally enabled form-generation. Material-based Design Computation is developed and proposed as a set of computational strategies supporting the integration of form, material and structure by incorporating physical form-finding strategies with digital analysis and fabrication. In this approach, material precedes shape, and it is the structuring of material properties as a function of structural and environmental performance that generates design form. The thesis proposes a unique approach to computationally-enabled form-finding procedures, and experimentally investigates how such processes contribute to novel ways of creating, distributing and depositing material forms. Variable Property Design is investigated as a theoretical and technical framework by which to model, analyze and fabricate objects with graduated properties designed to correspond to multiple and continuously varied functional constraints. The following methods were developed as the enabling mechanisms of Material Computation: Tiling Behavior & Digital Anisotropy, Finite Element Synthesis, and Material Pixels. In order to implement this approach as a fabrication process, a novel fabrication technology, termed Variable Property Rapid Prototyping has been developed, designed and patented. Among the potential contributions is the achievement of a high degree of customization through material heterogeneity as compared to conventional design of components and assemblies. Experimental designs employing suggested theoretical and technical frameworks, methods and techniques are presented, discussed and demonstrated. They support product customization, rapid augmentation and variable property fabrication. Developed as approximations of natural formation processes, these design experiments demonstrate the contribution and the potential future of a new design and research field.by Neri Oxman.Ph.D

    11th International Coral Reef Symposium Abstracts

    Get PDF
    https://nsuworks.nova.edu/occ_icrs/1001/thumbnail.jp

    Technology, Science and Culture: A Global Vision, Volume IV

    Get PDF

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    • …
    corecore