140 research outputs found

    k-forested choosability of graphs with bounded maximum average degree

    Full text link
    A proper vertex coloring of a simple graph is kk-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than kk. A graph is kk-forested qq-choosable if for a given list of qq colors associated with each vertex vv, there exists a kk-forested coloring of GG such that each vertex receives a color from its own list. In this paper, we prove that the kk-forested choosability of a graph with maximum degree Δk4\Delta\geq k\geq 4 is at most Δk1+1\lceil\frac{\Delta}{k-1}\rceil+1, Δk1+2\lceil\frac{\Delta}{k-1}\rceil+2 or Δk1+3\lceil\frac{\Delta}{k-1}\rceil+3 if its maximum average degree is less than 12/5, $8/3 or 3, respectively.Comment: Please cite this paper in press as X. Zhang, G. Liu, J.-L. Wu, k-forested choosability of graphs with bounded maximum average degree, Bulletin of the Iranian Mathematical Society, to appea

    Some results on (a:b)-choosability

    Get PDF
    A solution to a problem of Erd\H{o}s, Rubin and Taylor is obtained by showing that if a graph GG is (a:b)(a:b)-choosable, and c/d>a/bc/d > a/b, then GG is not necessarily (c:d)(c:d)-choosable. Applying probabilistic methods, an upper bound for the kthk^{th} choice number of a graph is given. We also prove that a directed graph with maximum outdegree dd and no odd directed cycle is (k(d+1):k)(k(d+1):k)-choosable for every k1k \geq 1. Other results presented in this article are related to the strong choice number of graphs (a generalization of the strong chromatic number). We conclude with complexity analysis of some decision problems related to graph choosability

    Majority choosability of digraphs

    Full text link
    A \emph{majority coloring} of a digraph is a coloring of its vertices such that for each vertex vv, at most half of the out-neighbors of vv has the same color as vv. A digraph DD is \emph{majority kk-choosable} if for any assignment of lists of colors of size kk to the vertices there is a majority coloring of DD from these lists. We prove that every digraph is majority 44-choosable. This gives a positive answer to a question posed recently by Kreutzer, Oum, Seymour, van der Zypen, and Wood in \cite{Kreutzer}. We obtain this result as a consequence of a more general theorem, in which majority condition is profitably extended. For instance, the theorem implies also that every digraph has a coloring from arbitrary lists of size three, in which at most 2/32/3 of the out-neighbors of any vertex share its color. This solves another problem posed in \cite{Kreutzer}, and supports an intriguing conjecture stating that every digraph is majority 33-colorable

    Defective and Clustered Graph Colouring

    Full text link
    Consider the following two ways to colour the vertices of a graph where the requirement that adjacent vertices get distinct colours is relaxed. A colouring has "defect" dd if each monochromatic component has maximum degree at most dd. A colouring has "clustering" cc if each monochromatic component has at most cc vertices. This paper surveys research on these types of colourings, where the first priority is to minimise the number of colours, with small defect or small clustering as a secondary goal. List colouring variants are also considered. The following graph classes are studied: outerplanar graphs, planar graphs, graphs embeddable in surfaces, graphs with given maximum degree, graphs with given maximum average degree, graphs excluding a given subgraph, graphs with linear crossing number, linklessly or knotlessly embeddable graphs, graphs with given Colin de Verdi\`ere parameter, graphs with given circumference, graphs excluding a fixed graph as an immersion, graphs with given thickness, graphs with given stack- or queue-number, graphs excluding KtK_t as a minor, graphs excluding Ks,tK_{s,t} as a minor, and graphs excluding an arbitrary graph HH as a minor. Several open problems are discussed.Comment: This is a preliminary version of a dynamic survey to be published in the Electronic Journal of Combinatoric

    Acyclic 4-choosability of planar graphs without 4-cycles

    Get PDF
    summary:A proper vertex coloring of a graph GG is acyclic if there is no bicolored cycle in GG. In other words, each cycle of GG must be colored with at least three colors. Given a list assignment L={L(v) ⁣:vV}L=\{L(v)\colon v\in V\}, if there exists an acyclic coloring π\pi of GG such that π(v)L(v)\pi (v)\in L(v) for all vVv\in V, then we say that GG is acyclically LL-colorable. If GG is acyclically LL-colorable for any list assignment LL with L(v)k|L(v)|\ge k for all vVv\in V, then GG is acyclically kk-choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles is acyclically 4-choosable. However, this has been as yet verified only for some restricted classes of planar graphs. In this paper, we prove that every planar graph with neither 4-cycles nor intersecting ii-cycles for each i{3,5}i\in \{3,5\} is acyclically 4-choosable
    corecore