18,343 research outputs found

    Viscous evolution of point vortex equilibria: The collinear state

    Full text link
    When point vortex equilibria of the 2D Euler equations are used as initial conditions for the corre- sponding Navier-Stokes equations (viscous), typically an interesting dynamical process unfolds at short and intermediate time scales, before the long time single peaked, self-similar Oseen vortex state dom- inates. In this paper, we describe the viscous evolution of a collinear three vortex structure that cor- responds to an inviscid point vortex fixed equilibrium. Using a multi-Gaussian 'core-growth' type of model, we show that the system immediately begins to rotate unsteadily, a mechanism we attribute to a 'viscously induced' instability. We then examine in detail the qualitative and quantitative evolution of the system as it evolves toward the long-time asymptotic Lamb-Oseen state, showing the sequence of topological bifurcations that occur both in a fixed reference frame, and in an appropriately chosen rotating reference frame. The evolution of passive particles in this viscously evolving flow is shown and interpreted in relation to these evolving streamline patterns.Comment: 17 pages, 15 figure

    Effects of discrete energy and helicity conservation in numerical simulations of helical turbulence

    Full text link
    Helicity is the scalar product between velocity and vorticity and, just like energy, its integral is an in-viscid invariant of the three-dimensional incompressible Navier-Stokes equations. However, space-and time-discretization methods typically corrupt this property, leading to violation of the inviscid conservation principles. This work investigates the discrete helicity conservation properties of spectral and finite-differencing methods, in relation to the form employed for the convective term. Effects due to Runge-Kutta time-advancement schemes are also taken into consideration in the analysis. The theoretical results are proved against inviscid numerical simulations, while a scale-dependent analysis of energy, helicity and their non-linear transfers is performed to further characterize the discretization errors of the different forms in forced helical turbulence simulations

    Effects of discrete energy and helicity conservation in numerical simulations of helical turbulence

    Full text link
    Helicity is the scalar product between velocity and vorticity and, just like energy, its integral is an in-viscid invariant of the three-dimensional incompressible Navier-Stokes equations. However, space-and time-discretization methods typically corrupt this property, leading to violation of the inviscid conservation principles. This work investigates the discrete helicity conservation properties of spectral and finite-differencing methods, in relation to the form employed for the convective term. Effects due to Runge-Kutta time-advancement schemes are also taken into consideration in the analysis. The theoretical results are proved against inviscid numerical simulations, while a scale-dependent analysis of energy, helicity and their non-linear transfers is performed to further characterize the discretization errors of the different forms in forced helical turbulence simulations

    Direct Numerical Simulation of turbulent Taylor-Couette flow

    Full text link
    The direct numerical simulation (DNS) of the Taylor--Couette flow in the fully turbulent regime is described. The numerical method extends the work by Quadrio & Luchini (Eur. J. Mech. B / Fluids, v.21, pp.413--427, 2002), and is based on a parallel computer code which uses mixed spatial discretization (spectral schemes in the homogeneous directions, and fourth-order, compact explicit finite-difference schemes in the radial direction). A DNS is carried out to simulate for the first time the turbulent Taylor--Couette flow in the turbulent regime. Statistical quantities are computed to complement the existing experimental information, with a view to compare it to planar, pressure-driven turbulent flow at the same value of the Reynolds number. The main source for differences in flow statistics between plane and curved-wall flows is attributed to the presence of large-scale rotating structures generated by curvature effects.Comment: To appear in European Journal of Mechanics B / Fluid

    Predicting wind turbine blade loads using vorticity transport and RANS methodologies

    Get PDF
    Two computational methods, one based on the solution of the vorticity transport equa- tion, and a second based on the solution of the Reynolds-Averaged Navier-Stokes equa- tions, have been used to simulate the aerodynamic performance of a horizontal axis wind turbine. Comparisons have been made against data obtained during Phase VI of the NREL Unsteady Aerodynamics Experimental and against existing numerical data for a range of wind conditions. The Reynolds-Averaged Navier-Stokes method demonstrates the potential to predict accurately the flow around the blades and the distribution of aero- dynamic loads developed on them. The Vorticity Transport Model possesses a consid- erable advantage in those situtations where the accurate, but computationally efficient, modelling of the structure of the wake and the associated induced velocity is critical, but where the prediction of blade loads can be achieved with sufficient accuracy using a lifting-line model augmented by incorporating a semi-empirical stall delay model. The largest benefits can be extracted when the two methods are used to complement each other in order to understand better the physical mechanisms governing the aerodynamic performance of wind turbines
    corecore