7 research outputs found

    Block-constrained compressed sensing

    Get PDF
    Dans cette thèse, nous visons à combiner les théories d'échantillonnage compressé (CS) avec une structure d'acquisition par blocs de mesures. D'une part, nous obtenons des résultats théoriques de CS avec contraintes d'acquisition par blocs, pour la reconstruction de tout vecteur s-parcimonieux et pour la reconstruction d'un vecteur x de support S fixé. Nous montrons que l'acquisition structurée peut donner de bons résultats de reconstruction théoriques, à condition que le signal à reconstruire présente une structure de parcimonie, adaptée aux contraintes d'échantillonnage. D'autre part, nous proposons des méthodes numériques pour générer des schémas d'échantillonnage efficaces reposant sur des blocs de mesures. Ces méthodes s'appuient sur des techniques de projection de mesure de probabilité.This PhD. thesis is dedicated to combine compressed sensing with block structured acquisition. In the first part of this work, theoretical CS results are derived with blocks acquisition constraints, for the recovery of any s-sparse signal and for the recovery of a vector with a given support S.We show that structured acquisition can be successfully used in a CS framework, provided that the signal to reconstruct presents an additional structure in its sparsity, adapted to the sampling constraints.In the second part of this work, we propose numerical methods to generate efficient block sampling schemes. This approach relies on the measure projection on admissible measures
    corecore