4,314 research outputs found

    Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

    Get PDF
    To harness the power of multi-core and distributed platforms, and to make the development of concurrent software more accessible to software engineers, different object-oriented concurrency models such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP programs, there are currently no general verification approaches that operate directly on program code without additional annotations. One reason for this is the multitude of partially conflicting semantic formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph transformation system (GTS) based run-time semantics for SCOOP that grasps the most common features of all known semantics of the language. This run-time model is implemented in the state-of-the-art GTS tool GROOVE, which allows us to simulate, analyse, and verify a subset of SCOOP programs with respect to deadlocks and other behavioural properties. Besides proposing the first approach to verify SCOOP programs by automatic translation to GTS, we also highlight our experiences of applying GTS (and especially GROOVE) for specifying semantics in the form of a run-time model, which should be transferable to GTS models for other concurrent languages and libraries.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs

    Get PDF
    A number of novel programming languages and libraries have been proposed that offer simpler-to-use models of concurrency than threads. It is challenging, however, to devise execution models that successfully realise their abstractions without forfeiting performance or introducing unintended behaviours. This is exemplified by SCOOP---a concurrent object-oriented message-passing language---which has seen multiple semantics proposed and implemented over its evolution. We propose a "semantics workbench" with fully and semi-automatic tools for SCOOP, that can be used to analyse and compare programs with respect to different execution models. We demonstrate its use in checking the consistency of semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of the language. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, and how the visual yet algebraic nature of the model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear

    Expression-based aliasing for OO-languages

    Full text link
    Alias analysis has been an interesting research topic in verification and optimization of programs. The undecidability of determining whether two expressions in a program may reference to the same object is the main source of the challenges raised in alias analysis. In this paper we propose an extension of a previously introduced alias calculus based on program expressions, to the setting of unbounded program executions s.a. infinite loops and recursive calls. Moreover, we devise a corresponding executable specification in the K-framework. An important property of our extension is that, in a non-concurrent setting, the corresponding alias expressions can be over-approximated in terms of a notion of regular expressions. This further enables us to show that the associated K-machinery implements an algorithm that always stops and provides a sound over-approximation of the "may aliasing" information, where soundness stands for the lack of false negatives. As a case study, we analyze the integration and further applications of the alias calculus in SCOOP. The latter is an object-oriented programming model for concurrency, recently formalized in Maude; K-definitions can be compiled into Maude for execution

    Efficient and Reasonable Object-Oriented Concurrency

    Full text link
    Making threaded programs safe and easy to reason about is one of the chief difficulties in modern programming. This work provides an efficient execution model for SCOOP, a concurrency approach that provides not only data race freedom but also pre/postcondition reasoning guarantees between threads. The extensions we propose influence both the underlying semantics to increase the amount of concurrent execution that is possible, exclude certain classes of deadlocks, and enable greater performance. These extensions are used as the basis an efficient runtime and optimization pass that improve performance 15x over a baseline implementation. This new implementation of SCOOP is also 2x faster than other well-known safe concurrent languages. The measurements are based on both coordination-intensive and data-manipulation-intensive benchmarks designed to offer a mixture of workloads.Comment: Proceedings of the 10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE '15). ACM, 201

    A semantics comparison workbench for a concurrent, asynchronous, distributed programming language

    Get PDF
    A number of high-level languages and libraries have been proposed that offer novel and simple to use abstractions for concurrent, asynchronous, and distributed programming. The execution models that realise them, however, often change over time---whether to improve performance, or to extend them to new language features---potentially affecting behavioural and safety properties of existing programs. This is exemplified by SCOOP, a message-passing approach to concurrent object-oriented programming that has seen multiple changes proposed and implemented, with demonstrable consequences for an idiomatic usage of its core abstraction. We propose a semantics comparison workbench for SCOOP with fully and semi-automatic tools for analysing and comparing the state spaces of programs with respect to different execution models or semantics. We demonstrate its use in checking the consistency of properties across semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of SCOOP. Furthermore, we demonstrate the extensibility of the workbench by generalising the formalisation of an execution model to support recently proposed extensions for distributed programming. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, how the visual yet algebraic nature of the model can be used to ascertain soundness, and highlight how the approach could be applied to similar languages.Comment: Accepted by Formal Aspects of Computin

    Space Programs Summary No. 37-51, Volume 1 for the Period March 1 to April 30, 1968. Flight Projects

    Get PDF
    Mariner Mars 1969 project, Surveyor soft landing, and advanced planetary missions technolog

    Modelling and Verifying an Object-Oriented Concurrency Model in GROOVE

    Full text link
    SCOOP is a programming model and language that allows concurrent programming at a high level of abstraction. Several approaches to verifying SCOOP programs have been proposed in the past, but none of them operate directly on the source code without modifications or annotations. We propose a fully automatic approach to verifying (a subset of) SCOOP programs by translation to graph-based models. First, we present a graph transformation based semantics for SCOOP. We present an implementation of the model in the state-of-the-art model checker GROOVE, which can be used to simulate programs and verify concurrency and consistency properties, such as the impossibility of deadlocks occurring or the absence of postcondition violations. Second, we present a translation tool that operates on SCOOP program code and generates input for the model. We evaluate our approach by inspecting a number of programs in the form of case studies.Comment: 124 pages, Master's Thesis at ETH Z\"uric
    corecore