445 research outputs found

    ON THE USE OF THE DEMPSTER SHAFER MODEL IN INFORMATION INDEXING AND RETRIEVAL APPLICATIONS

    Get PDF
    The Dempster Shafer theory of evidence concerns the elicitation and manipulation of degrees of belief rendered by multiple sources of evidence to a common set of propositions. Information indexing and retrieval applications use a variety of quantitative means - both probabilistic and quasi-probabilistic - to represent and manipulate relevance numbers and index vectors. Recently, several proposals were made to use the Dempster Shafes model as a relevance calculus in such applications. The paper provides a critical review of these proposals, pointing at several theoretical caveats and suggesting ways to resolve them. The methodology is based on expounding a canonical indexing model whose relevance measures and combination mechanisms are shown to be isomorphic to Shafer's belief functions and to Dempster's rule, respectively. Hence, the paper has two objectives: (i) to describe and resolve some caveats in the way the Dempster Shafer theory is applied to information indexing and retrieval, and (ii) to provide an intuitive interpretation of the Dempster Shafer theory, as it unfolds in the simple context of a canonical indexing model.Information Systems Working Papers Serie

    A model for structured document retrieval : empirical investigations

    Get PDF
    Documents often display a structure, e.g., several sections, each with several subsections and so on. Taking into account the structure of a document allows the retrieval process to focus on those parts of the document that are most relevant to an information need. In previous work, we developed a model for the representation and the retrieval of structured documents. This paper reports the first experimental study of the effectiveness and applicability of the model

    Inexpensive fusion methods for enhancing feature detection

    Get PDF
    Recent successful approaches to high-level feature detection in image and video data have treated the problem as a pattern classification task. These typically leverage the techniques learned from statistical machine learning, coupled with ensemble architectures that create multiple feature detection models. Once created, co-occurrence between learned features can be captured to further boost performance. At multiple stages throughout these frameworks, various pieces of evidence can be fused together in order to boost performance. These approaches whilst very successful are computationally expensive, and depending on the task, require the use of significant computational resources. In this paper we propose two fusion methods that aim to combine the output of an initial basic statistical machine learning approach with a lower-quality information source, in order to gain diversity in the classified results whilst requiring only modest computing resources. Our approaches, validated experimentally on TRECVid data, are designed to be complementary to existing frameworks and can be regarded as possible replacements for the more computationally expensive combination strategies used elsewhere

    Finding Academic Experts on a MultiSensor Approach using Shannon's Entropy

    Full text link
    Expert finding is an information retrieval task concerned with the search for the most knowledgeable people, in some topic, with basis on documents describing peoples activities. The task involves taking a user query as input and returning a list of people sorted by their level of expertise regarding the user query. This paper introduces a novel approach for combining multiple estimators of expertise based on a multisensor data fusion framework together with the Dempster-Shafer theory of evidence and Shannon's entropy. More specifically, we defined three sensors which detect heterogeneous information derived from the textual contents, from the graph structure of the citation patterns for the community of experts, and from profile information about the academic experts. Given the evidences collected, each sensor may define different candidates as experts and consequently do not agree in a final ranking decision. To deal with these conflicts, we applied the Dempster-Shafer theory of evidence combined with Shannon's Entropy formula to fuse this information and come up with a more accurate and reliable final ranking list. Experiments made over two datasets of academic publications from the Computer Science domain attest for the adequacy of the proposed approach over the traditional state of the art approaches. We also made experiments against representative supervised state of the art algorithms. Results revealed that the proposed method achieved a similar performance when compared to these supervised techniques, confirming the capabilities of the proposed framework

    Relating Dependent Terms in Information Retrieval

    Get PDF
    Les moteurs de recherche font partie de notre vie quotidienne. Actuellement, plus d’un tiers de la population mondiale utilise l’Internet. Les moteurs de recherche leur permettent de trouver rapidement les informations ou les produits qu'ils veulent. La recherche d'information (IR) est le fondement de moteurs de recherche modernes. Les approches traditionnelles de recherche d'information supposent que les termes d'indexation sont indépendants. Pourtant, les termes qui apparaissent dans le même contexte sont souvent dépendants. L’absence de la prise en compte de ces dépendances est une des causes de l’introduction de bruit dans le résultat (résultat non pertinents). Certaines études ont proposé d’intégrer certains types de dépendance, tels que la proximité, la cooccurrence, la contiguïté et de la dépendance grammaticale. Dans la plupart des cas, les modèles de dépendance sont construits séparément et ensuite combinés avec le modèle traditionnel de mots avec une importance constante. Par conséquent, ils ne peuvent pas capturer correctement la dépendance variable et la force de dépendance. Par exemple, la dépendance entre les mots adjacents "Black Friday" est plus importante que celle entre les mots "road constructions". Dans cette thèse, nous étudions différentes approches pour capturer les relations des termes et de leurs forces de dépendance. Nous avons proposé des méthodes suivantes: ─ Nous réexaminons l'approche de combinaison en utilisant différentes unités d'indexation pour la RI monolingue en chinois et la RI translinguistique entre anglais et chinois. En plus d’utiliser des mots, nous étudions la possibilité d'utiliser bi-gramme et uni-gramme comme unité de traduction pour le chinois. Plusieurs modèles de traduction sont construits pour traduire des mots anglais en uni-grammes, bi-grammes et mots chinois avec un corpus parallèle. Une requête en anglais est ensuite traduite de plusieurs façons, et un score classement est produit avec chaque traduction. Le score final de classement combine tous ces types de traduction. Nous considérons la dépendance entre les termes en utilisant la théorie d’évidence de Dempster-Shafer. Une occurrence d'un fragment de texte (de plusieurs mots) dans un document est considérée comme représentant l'ensemble de tous les termes constituants. La probabilité est assignée à un tel ensemble de termes plutôt qu’a chaque terme individuel. Au moment d’évaluation de requête, cette probabilité est redistribuée aux termes de la requête si ces derniers sont différents. Cette approche nous permet d'intégrer les relations de dépendance entre les termes. Nous proposons un modèle discriminant pour intégrer les différentes types de dépendance selon leur force et leur utilité pour la RI. Notamment, nous considérons la dépendance de contiguïté et de cooccurrence à de différentes distances, c’est-à-dire les bi-grammes et les paires de termes dans une fenêtre de 2, 4, 8 et 16 mots. Le poids d’un bi-gramme ou d’une paire de termes dépendants est déterminé selon un ensemble des caractères, en utilisant la régression SVM. Toutes les méthodes proposées sont évaluées sur plusieurs collections en anglais et/ou chinois, et les résultats expérimentaux montrent que ces méthodes produisent des améliorations substantielles sur l'état de l'art.Search engine has become an integral part of our life. More than one-third of world populations are Internet users. Most users turn to a search engine as the quick way to finding the information or product they want. Information retrieval (IR) is the foundation for modern search engines. Traditional information retrieval approaches assume that indexing terms are independent. However, terms occurring in the same context are often dependent. Failing to recognize the dependencies between terms leads to noise (irrelevant documents) in the result. Some studies have proposed to integrate term dependency of different types, such as proximity, co-occurrence, adjacency and grammatical dependency. In most cases, dependency models are constructed apart and then combined with the traditional word-based (unigram) model on a fixed importance proportion. Consequently, they cannot properly capture variable term dependency and its strength. For example, dependency between adjacent words “black Friday” is more important to consider than those of between “road constructions”. In this thesis, we try to study different approaches to capture term relationships and their dependency strengths. We propose the following methods for monolingual IR and Cross-Language IR (CLIR): We re-examine the combination approach by using different indexing units for Chinese monolingual IR, then propose the similar method for CLIR. In addition to the traditional method based on words, we investigate the possibility of using Chinese bigrams and unigrams as translation units. Several translation models from English words to Chinese unigrams, bigrams and words are created based on a parallel corpus. An English query is then translated in several ways, each producing a ranking score. The final ranking score combines all these types of translations. We incorporate dependencies between terms in our model using Dempster-Shafer theory of evidence. Every occurrence of a text fragment in a document is represented as a set which includes all its implied terms. Probability is assigned to such a set of terms instead of individual terms. During query evaluation phase, the probability of the set can be transferred to those of the related query, allowing us to integrate language-dependent relations to IR. We propose a discriminative language model that integrates different term dependencies according to their strength and usefulness to IR. We consider the dependency of adjacency and co-occurrence within different distances, i.e. bigrams, pairs of terms within text window of size 2, 4, 8 and 16. The weight of bigram or a pair of dependent terms in the final model is learnt according to a set of features. All the proposed methods are evaluated on several English and/or Chinese collections, and experimental results show these methods achieve substantial improvements over state-of-the-art baselines

    An adaptive technique for content-based image retrieval

    Get PDF
    We discuss an adaptive approach towards Content-Based Image Retrieval. It is based on the Ostensive Model of developing information needs—a special kind of relevance feedback model that learns from implicit user feedback and adds a temporal notion to relevance. The ostensive approach supports content-assisted browsing through visualising the interaction by adding user-selected images to a browsing path, which ends with a set of system recommendations. The suggestions are based on an adaptive query learning scheme, in which the query is learnt from previously selected images. Our approach is an adaptation of the original Ostensive Model based on textual features only, to include content-based features to characterise images. In the proposed scheme textual and colour features are combined using the Dempster-Shafer theory of evidence combination. Results from a user-centred, work-task oriented evaluation show that the ostensive interface is preferred over a traditional interface with manual query facilities. This is due to its ability to adapt to the user's need, its intuitiveness and the fluid way in which it operates. Studying and comparing the nature of the underlying information need, it emerges that our approach elicits changes in the user's need based on the interaction, and is successful in adapting the retrieval to match the changes. In addition, a preliminary study of the retrieval performance of the ostensive relevance feedback scheme shows that it can outperform a standard relevance feedback strategy in terms of image recall in category search

    AN INTUITIVE INTERPRETATION OF THE THEORY OF EVIDENCE IN THE CONTEXT OF BIBLIOGRAPHICAL INDEXING

    Get PDF
    Models of bibliographical Indexing concern the construction of effective keyword taxonomies and the representation of relevance between document s and keywords. The theory of evidence concerns the elicitation and manipulation of degrees of belief rendered by multiple sources of evidence to a common set of propositions. The paper presents a formal framework in which adaptive taxonomies and probabilistic indexing are induced dynamically by the relevance opinions of the library's patrons. Different measures of relevance and mechanisms for combining them are presented and shown to be isomorphic to the belief functions and combination rules of the theory of evidence. The paper thus has two objectives: (i) to treat formally slippery concepts like probabilistic indexing and average relevance, and (ii) to provide an intuitive justification to the Dempster Shafer theory of evidence, using bibliographical indexing as a canonical example.Information Systems Working Papers Serie

    MULTI-PLAYER BELIEF CALCULI: MODELS AND APPLICATIONS

    Get PDF
    In developing methods for dealing with uncertainty in reasoning systems, it is important to consider the needs of the target applications. In particular, when the source of inferential uncertainty can be tracked to distributions of expert opinions, there might be different ways to model the representation and combination of these opinions. In this paper we present the notion of multiplayer belief calculi - a framework that takes into consideration not only the 'regular' type of evidential uncertainty, but also the diversity of expert opinions when the evidence is held fixed. Using several applied examples, we show how the basic framework can be naturally extended to support different application needs and different sets of assumptions about the nature of the inference process.Information Systems Working Papers Serie

    Formal models, usability and related work in IR (editorial for special edition)

    Get PDF
    The Glasgow IR group has carried out both theoretical and empirical work, aimed at giving end users efficient and effective access to large collections of multimedia data
    corecore