591 research outputs found

    Poster: Improving Bug Localization with Report Quality Dynamics and Query Reformulation

    Full text link
    Recent findings from a user study suggest that IR-based bug localization techniques do not perform well if the bug report lacks rich structured information such as relevant program entity names. On the contrary, excessive structured information such as stack traces in the bug report might always not be helpful for the automated bug localization. In this paper, we conduct a large empirical study using 5,500 bug reports from eight subject systems and replicating three existing studies from the literature. Our findings (1) empirically demonstrate how quality dynamics of bug reports affect the performances of IR-based bug localization, and (2) suggest potential ways (e.g., query reformulations) to overcome such limitations.Comment: The 40th International Conference on Software Engineering (Companion volume, Poster Track) (ICSE 2018), pp. 348--349, Gothenburg, Sweden, May, 201

    Locating bugs without looking back

    Get PDF
    Bug localisation is a core program comprehension task in software maintenance: given the observation of a bug, e.g. via a bug report, where is it located in the source code? Information retrieval (IR) approaches see the bug report as the query, and the source code files as the documents to be retrieved, ranked by relevance. Such approaches have the advantage of not requiring expensive static or dynamic analysis of the code. However, current state-of-the-art IR approaches rely on project history, in particular previously fixed bugs or previous versions of the source code. We present a novel approach that directly scores each current file against the given report, thus not requiring past code and reports. The scoring method is based on heuristics identified through manual inspection of a small sample of bug reports. We compare our approach to eight others, using their own five metrics on their own six open source projects. Out of 30 performance indicators, we improve 27 and equal 2. Over the projects analysed, on average we find one or more affected files in the top 10 ranked files for 76% of the bug reports. These results show the applicability of our approach to software projects without history

    Exploiting Spatial Code Proximity and Order for Improved Source Code Retrieval for Bug Localization

    Get PDF
    Abstract—Practically all Information Retrieval (IR) based approaches developed to date for automatic bug localization are based on the bag-of-words assumption that ignores any positional and ordering relationships between the terms in a query. In this paper we argue that bug reports are ill-served by this assumption since such reports frequently contain various types of structural information whose terms must obey certain positional and ordering constraints. It therefore stands to reason that the quality of retrieval for bug localization would improve if these constraints could be taken into account when searching for the most relevant files. In this paper, we demonstrate that such is indeed the case. We show how the well-known Markov Random Field (MRF) based retrieval framework can be used for taking into account the term-term proximity and ordering relationships in a query vis-a-vis the same relationships in the files of a source-code library to greatly improve the quality of retrieval of the most relevant source files. We have carried out our experimental evaluations on popular large software projects using over 4 thousand bug reports. The results we present demonstrate unequivocally that the new proposed approach is far superior to the widely used bag-of-words based approaches

    Supporting Source Code Search with Context-Aware and Semantics-Driven Query Reformulation

    Get PDF
    Software bugs and failures cost trillions of dollars every year, and could even lead to deadly accidents (e.g., Therac-25 accident). During maintenance, software developers fix numerous bugs and implement hundreds of new features by making necessary changes to the existing software code. Once an issue report (e.g., bug report, change request) is assigned to a developer, she chooses a few important keywords from the report as a search query, and then attempts to find out the exact locations in the software code that need to be either repaired or enhanced. As a part of this maintenance, developers also often select ad hoc queries on the fly, and attempt to locate the reusable code from the Internet that could assist them either in bug fixing or in feature implementation. Unfortunately, even the experienced developers often fail to construct the right search queries. Even if the developers come up with a few ad hoc queries, most of them require frequent modifications which cost significant development time and efforts. Thus, construction of an appropriate query for localizing the software bugs, programming concepts or even the reusable code is a major challenge. In this thesis, we overcome this query construction challenge with six studies, and develop a novel, effective code search solution (BugDoctor) that assists the developers in localizing the software code of interest (e.g., bugs, concepts and reusable code) during software maintenance. In particular, we reformulate a given search query (1) by designing novel keyword selection algorithms (e.g., CodeRank) that outperform the traditional alternatives (e.g., TF-IDF), (2) by leveraging the bug report quality paradigm and source document structures which were previously overlooked and (3) by exploiting the crowd knowledge and word semantics derived from Stack Overflow Q&A site, which were previously untapped. Our experiment using 5000+ search queries (bug reports, change requests, and ad hoc queries) suggests that our proposed approach can improve the given queries significantly through automated query reformulations. Comparison with 10+ existing studies on bug localization, concept location and Internet-scale code search suggests that our approach can outperform the state-of-the-art approaches with a significant margin

    Source Code Retrieval from Large Software Libraries for Automatic Bug Localization

    Get PDF
    This dissertation advances the state-of-the-art in information retrieval (IR) based approaches to automatic bug localization in software. In an IR-based approach, one first creates a search engine using a probabilistic or a deterministic model for the files in a software library. Subsequently, a bug report is treated as a query to the search engine for retrieving the files relevant to the bug. With regard to the new work presented, we first demonstrate the importance of taking version histories of the files into account for achieving significant improvements in the precision with which the files related to a bug are located. This is motivated by the realization that the files that have not changed in a long time are likely to have ``stabilized and are therefore less likely to contain bugs. Subsequently, we look at the difficulties created by the fact that developers frequently use abbreviations and concatenations that are not likely to be familiar to someone trying to locate the files related to a bug. We show how an initial query can be automatically reformulated to include the relevant actual terms in the files by an analysis of the files retrieved in response to the original query for terms that are proximal to the original query terms. The last part of this dissertation generalizes our term-proximity based work by using Markov Random Fields (MRF) to model the inter-term dependencies in a query vis-a-vis the files. Our MRF work redresses one of the major defects of the most commonly used modeling approaches in IR, which is the loss of all inter-term relationships in the documents

    Changeset-based Retrieval of Source Code Artifacts for Bug Localization

    Get PDF
    Modern software development is extremely collaborative and agile, with unprecedented speed and scale of activity. Popular trends like continuous delivery and continuous deployment aim at building, fixing, and releasing software with greater speed and frequency. Bug localization, which aims to automatically localize bug reports to relevant software artifacts, has the potential to improve software developer efficiency by reducing the time spent on debugging and examining code. To date, this problem has been primarily addressed by applying information retrieval techniques based on static code elements, which are intrinsically unable to reflect how software evolves over time. Furthermore, as prior approaches frequently rely on exact term matching to measure relatedness between a bug report and a software artifact, they are prone to be affected by the lexical gap that exists between natural and programming language. This thesis explores using software changes (i.e., changesets), instead of static code elements, as the primary data unit to construct an information retrieval model toward bug localization. Changesets, which represent the differences between two consecutive versions of the source code, provide a natural representation of a software change, and allow to capture both the semantics of the source code, and the semantics of the code modification. To bridge the lexical gap between source code and natural language, this thesis investigates using topic modeling and deep learning architectures that enable creating semantically rich data representation with the goal of identifying latent connection between bug reports and source code. To show the feasibility of the proposed approaches, this thesis also investigates practical aspects related to using a bug localization tool, such retrieval delay and training data availability. The results indicate that the proposed techniques effectively leverage historical data about bugs and their related source code components to improve retrieval accuracy, especially for bug reports that are expressed in natural language, with little to no explicit code references. Further improvement in accuracy is observed when the size of the training dataset is increased through data augmentation and data balancing strategies proposed in this thesis, although depending on the model architecture the magnitude of the improvement varies. In terms of retrieval delay, the results indicate that the proposed deep learning architecture significantly outperforms prior work, and scales up with respect to search space size

    Too Few Bug Reports? Exploring Data Augmentation for Improved Changeset-based Bug Localization

    Full text link
    Modern Deep Learning (DL) architectures based on transformers (e.g., BERT, RoBERTa) are exhibiting performance improvements across a number of natural language tasks. While such DL models have shown tremendous potential for use in software engineering applications, they are often hampered by insufficient training data. Particularly constrained are applications that require project-specific data, such as bug localization, which aims at recommending code to fix a newly submitted bug report. Deep learning models for bug localization require a substantial training set of fixed bug reports, which are at a limited quantity even in popular and actively developed software projects. In this paper, we examine the effect of using synthetic training data on transformer-based DL models that perform a more complex variant of bug localization, which has the goal of retrieving bug-inducing changesets for each bug report. To generate high-quality synthetic data, we propose novel data augmentation operators that act on different constituent components of bug reports. We also describe a data balancing strategy that aims to create a corpus of augmented bug reports that better reflects the entire source code base, because existing bug reports used as training data usually reference a small part of the code base
    • …
    corecore