6 research outputs found

    Low-Complexity Equalisers for Offset Constellations in Massive MIMO Schemes

    Get PDF
    This work was supported in part by the European Regional Development Fund (FEDER), through the Competitiveness and Internationalization Operational Program of the Portugal 2020 Framework, in part by the Regional OP Centro under Grant POCI-01-0145-FEDER-030588, in part by the Regional OP Lisboa under Grant Lisboa-01-0145-FEDER-03058, in part by the FCT/MEC through national funds of MASSIVE5G Project under Grant SAICT-45-2017-02 and PES3N Project under Grant 2018-SAICT-45-2017-POCI-01-0145-FEDER-030629, in part by the UID/EEE/50008/2019 Project, and in part by the FCT Ph.D. under Grant SFRH/BD/108522/2015.Massive multi-input-multi-output (m-MIMO) schemes require low-complexity implementations at both the transmitter and the receiver side, especially for systems operation at millimeter wave (mmWave) bands. In this paper, we consider the use of offset constellations in m-MIMO systems operating at mmWave frequencies. These signals are designed to have either an almost constant envelope or be decomposed as the sum of constant-envelope signals, making them compatible with strongly nonlinear power amplifiers, which can have low-implementation complexity and high amplification efficient, making them particularly interesting for mmWave communications. We design and evaluate low-complexity frequency-domain receivers for offset signals. It is shown that the proposed receivers can have excellent performance/complexity trade-offs in m-MIMO scenarios, making them particularly interesting for future wireless systems operating at mmWave bands.publishersversionpublishe

    Multiple Input Multiple Output System with Multi User Support Based on Directive Information Transmission

    Get PDF
    Low interference and privacy are crucial requirements for system reliability and security. Present and further mobile communication systems must support multiple users achieving at same time low interference levels. Several solutions can be adopted to reduce interference between users, such as spreading codes or beam forming. For very high bit rates ¯rst solution must be discarded. On the other hand, in environments with a very high number of users beamforming can impose demanding hardware requirements in mobile devices, which is undesirable. Transmitters with directivity introduced at information level where the transmitted constellation is only optimized in the desired direction can also be used to assure low interference. Under this approach, power e±ciency on ampli¯cation can be also improved, due to the fact that constellations are decomposed into several BPSK (Bi Phase Shift Keying) or QPSK components (Quadri-Phase Shift Keying), being each one separately ampli¯ed and transmitted independently by an antenna. Therefore, several users can coexist since each user must know the con¯guration parameters associated to the constellation con¯guration, i.e., the direction in which the constellation is optimized, otherwise receives a degenerated constellation with useless data. The simulation results show the e®ectiveness in user data stream separation of the proposed approach

    Implementação de códigos LDPC em OFDM e SC-FDE

    Get PDF
    Os desenvolvimentos dos sistemas de comunicação sem fios apontam para transmissões de alta velocidade e alta qualidade de serviço com um uso eficiente de energia. Eficiência espectral pode ser obtida por modulações multinível, enquanto que melhorias na eficiência de potência podem ser proporcionadas pelo uso de códigos corretores de erros. Os códigos Low-Density Parity-Check (LDPC), devido ao seu desempenho próximo do limite de Shannon e baixa complexidade na implementação e descodificação são apropriados para futuros sistemas de comunicações sem fios. Por outro lado, o uso de modulações multinível acarreta limitações na amplificação. Contudo, uma amplificação eficiente pode ser assegurada por estruturas de transmissão onde as modulações multinível são decompostas em submodulações com envolvente constante que podem ser amplificadas por amplificadores não lineares a operar na zona de saturação. Neste tipo de estruturas surgem desvios de fase e ganho, produzindo distorções na constelação resultante da soma de todos os sinais amplificados. O trabalho foca-se no uso dos códigos LDPC em esquemas multiportadora e monoportadora, com especial ênfase na performance de uma equalização iterativa implementada no domínio da frequência por um Iterative Block-Decision Feedback Equalizer (IB-DFE). São analisados aspectos como o impacto do número de iterações no processo de descodificação dentro das iterações do processo de equalização. Os códigos LDPC também serão utilizados para compensar os desvios de fase em recetores iterativos para sistemas baseados em transmissores com vários ramos de amplificação. É feito um estudo sobre o modo como estes códigos podem aumentar a tolerância a erros de fase que incluí uma análise da complexidade e um algoritmo para estimação dos desequilíbrios de fase

    Massive MIMO transmission techniques

    Get PDF
    Next generation of mobile communication systems must support astounding data traffic increases, higher data rates and lower latency, among other requirements. These requirements should be met while assuring energy efficiency for mobile devices and base stations. Several technologies are being proposed for 5G, but a consensus begins to emerge. Most likely, the future core 5G technologies will include massive MIMO (Multiple Input Multiple Output) and beamforming schemes operating in the millimeter wave spectrum. As soon as the millimeter wave propagation difficulties are overcome, the full potential of massive MIMO structures can be tapped. The present work proposes a new transmission system with bi-dimensional antenna arrays working at millimeter wave frequencies, where the multiple antenna configurations can be used to obtain very high gain and directive transmission in point to point communications. A combination of beamforming with a constellation shaping scheme is proposed, that enables good user isolation and protection against eavesdropping, while simultaneously assuring power efficient amplification of multi-level constellations

    Segurança no nível físico em sistemas multi-antena com diretividade na informação

    Get PDF
    Os sistemas de comunicação sem fios são sistemas de difusão por natureza. Devido a essa sua natureza, um dos problemas inerentes à mesma deve-se à segurança e ao secretismo, pois se o canal é partilhado a informação facilmente é obtida por um utilizador não autorizado, ao contrário dos sistemas de comunicação com fios. Tradicionalmente, a introdução de segurança em sistemas de comunicação, resulta na encriptação da informação, resultante de protocolos de encriptação. No entanto, a segurança através da criptografia baseia-se na premissa de que o utilizador não autorizado tem uma capacidade de processamento limitada, pois senão poderia simplesmente tentar todas as combinações possíveis e obter a chave de encriptação. Como a capacidade de processamento tem crescido exponencialmente, este tipo de sistemas tem se tornado cada vez mais complexos para não se tornarem obsoletos. A introdução de segurança na camada física torna-se então uma opção apelativa pois pode servir como um complemento, visto que os sistemas de criptografia funcionam em camadas superiores independentes da camada fisica, apresentando assim uma abordagem multi-camada em termos de segurança. Tipicamente as técnicas de segurança no nível físico podem se agrupar em 2 tipos: técnicas que se baseiam em códigos, ou técnicas que exploram variações temporais e espaciais do canal. As primeiras diminuem a eficiência espectral do sistema, e as segundas apresentam bons resultados em ambientes dinâmicos, mas em ambientes estáticos não são muito promissores. Há também a necessidade de aumentar as taxas de transmissão nos próximos sistemas de comunicação. Devido a estes requisitos, uma das tecnologias propostas para a nova geração de comunicações, é uma tecnologia baseada numa arquitectura Multiple-Input-Multiple-Output(MIMO). Esta tecnologia é promissora e consegue atingir taxas de transferências que correspondem aos requisitos propostos. Apresenta-se assim uma nova técnica de segurança no nível físico, que explora as caracteristicas físicas do sistema, como um complemento a outras medidas de segurança em camadas mais altas. Esta técnica não provoca diminuição da eficiência espectral e é independente do canal, o que tenta solucionar os problemas das restantes técnicas já existentes

    On the Use of Multiple Grossly Nonlinear Amplifiers for an Efficient Amplification of OQAM Signals with FDE Receivers

    No full text
    corecore