4 research outputs found

    Orthogonally Constrained Sparse Approximations with Applications to Geometry Processing

    Get PDF
    Compressed manifold modes are solutions to an optimisation problem involving the ℓ1\ell_1 norm and the orthogonality condition XTMX=IX^TMX=I. Such functions can be used in geometry processing as a basis for the function space of a mesh and are related to the Laplacian eigenfunctions. Compressed manifold modes and other alternatives to the Laplacian eigenfunctions are all special cases of generalised manifold harmonics, introduced here as solutions to a more general problem. An important property of the Laplacian eigenfunctions is that they commute with isometry. A definition for isometry between meshes is given and it is proved that compressed manifold modes also commute with isometry. The requirements for generalised manifold harmonics to commute with isometry are explored. A variety of alternative basis functions are tested for their ability to reconstruct specific functions -- it is observed that the function type has more impact than the basis type. The bases are also tested for their ability to reconstruct functions transformed by functional map -- it is observed that some bases work better for different shape collections. The Stiefel manifold is given by the set of matrices X∈Rn×kX \in \mathbb{R}^{n \times k} such that XTMX=IX^TMX = I, with M=IM=I. Properties and results are generalised for the M≠IM \neq I case. A sequential algorithm for optimisation on the generalised Stiefel manifold is given and applied to the calculation of compressed manifold modes. This involves a smoothing of the ℓ1\ell_1 norm. Laplacian eigenfunctions can be approximated by solving an eigenproblem restricted to a subspace. It is proved that these restricted eigenfunctions also commute with isometry. Finally, a method for the approximation of compressed manifold modes is given. This combines the method of fast approximation of Laplacian eigenfunctions with the ADMM solution to the compressed manifold mode problem. A significant improvement is made to the speed of calculation

    Variational Methods and Numerical Algorithms for Geometry Processing

    Get PDF
    In this work we address the problem of shape partitioning which enables the decomposition of an arbitrary topology object into smaller and more manageable pieces called partitions. Several applications in Computer Aided Design (CAD), Computer Aided Manufactury (CAM) and Finite Element Analysis (FEA) rely on object partitioning that provides a high level insight of the data useful for further processing. In particular, we are interested in 2-manifold partitioning, since the boundaries of tangible physical objects can be mathematically defined by two-dimensional manifolds embedded into three-dimensional Euclidean space. To that aim, a preliminary shape analysis is performed based on shape characterizing scalar/vector functions defined on a closed Riemannian 2-manifold. The detected shape features are used to drive the partitioning process into two directions – a human-based partitioning and a thickness-based partitioning. In particular, we focus on the Shape Diameter Function that recovers volumetric information from the surface thus providing a natural link between the object’s volume and its boundary, we consider the spectral decomposition of suitably-defined affinity matrices which provides multi-dimensional spectral coordinates of the object’s vertices, and we introduce a novel basis of sparse and localized quasi-eigenfunctions of the Laplace-Beltrami operator called Lp Compressed Manifold Modes. The partitioning problem, which can be considered as a particular inverse problem, is formulated as a variational regularization problem whose solution provides the so-called piecewise constant/smooth partitioning function. The functional to be minimized consists of a fidelity term to a given data set and a regularization term which promotes sparsity, such as for example, Lp norm with p ∈ (0, 1) and other parameterized, non-convex penalty functions with positive parameter, which controls the degree of non-convexity. The proposed partitioning variational models, inspired on the well-known Mumford Shah models for recovering piecewise smooth/constant functions, incorporate a non-convex regularizer for minimizing the boundary lengths. The derived non-convex non-smooth optimization problems are solved by efficient numerical algorithms based on Proximal Forward-Backward Splitting and Alternating Directions Method of Multipliers strategies, also employing Convex Non-Convex approaches. Finally, we investigate the application of surface partitioning to patch-based surface quadrangulation. To that aim the 2-manifold is first partitioned into zero-genus patches that capture the object’s arbitrary topology, then for each patch a quad-based minimal surface is created and evolved by a Lagrangian-based PDE evolution model to the original shape to obtain the final semi-regular quad mesh. The evolution is supervised by asymptotically area-uniform tangential redistribution for the quads

    Rekonstruktion, Analyse und Editierung dynamisch deformierter 3D-OberflÀchen

    Get PDF
    Dynamically deforming 3D surfaces play a major role in computer graphics. However, producing time-varying dynamic geometry at ever increasing detail is a time-consuming and costly process, and so a recent trend is to capture geometry data directly from the real world. In the first part of this thesis, I propose novel approaches for this research area. These approaches capture dense dynamic 3D surfaces from multi-camera systems in a particularly robust and accurate way. This provides highly realistic dynamic surface models for phenomena like moving garments and bulging muscles. However, re-using, editing, or otherwise analyzing dynamic 3D surface data is not yet conveniently possible. To close this gap, the second part of this dissertation develops novel data-driven modeling and animation approaches. I first show a supervised data-driven approach for modeling human muscle deformations that scales to huge datasets and provides fine-scale, anatomically realistic deformations at high quality not attainable by previous methods. I then extend data-driven modeling to the unsupervised case, providing editing tools for a wider set of input data ranging from facial performance capture and full-body motion to muscle and cloth deformation. To this end, I introduce the concepts of sparsity and locality within a mathematical optimization framework. I also explore these concepts for constructing shape-aware functions that are useful for static geometry processing, registration, and localized editing.Dynamisch deformierbare 3D-OberflĂ€chen spielen in der Computergrafik eine zentrale Rolle. Die Erstellung der fĂŒr Computergrafik-Anwendungen benötigten, hochaufgelösten und zeitlich verĂ€nderlichen OberflĂ€chengeometrien ist allerdings Ă€ußerst arbeitsintensiv. Aus dieser Problematik heraus hat sich der Trend entwickelt, OberflĂ€chendaten direkt aus Aufnahmen der echten Welt zu erfassen. Dazu nötige 3D-Rekonstruktionsverfahren werden im ersten Teil der Arbeit entwickelt. Die vorgestellten, neuartigen Verfahren erlauben die Erfassung dynamischer 3D-OberflĂ€chen aus Mehrkamera-Aufnahmen bei hoher VerlĂ€sslichkeit und PrĂ€zision. Auf diese Weise können detaillierte OberflĂ€chenmodelle von PhĂ€nomenen wie in Bewegung befindliche Kleidung oder sich anspannende Muskeln erfasst werden. Aber auch die Wiederverwendung, Bearbeitung und Analyse derlei gewonnener 3D-OberflĂ€chendaten ist aktuell noch nicht auf eine einfache Art und Weise möglich. Um diese LĂŒcke zu schließen beschĂ€ftigt sich der zweite Teil der Arbeit mit der datengetriebenen Modellierung und Animation. ZunĂ€chst wird ein Ansatz fĂŒr das ĂŒberwachte Lernen menschlicher Muskel-Deformationen vorgestellt. Dieses neuartige Verfahren ermöglicht eine datengetriebene Modellierung mit besonders umfangreichen DatensĂ€tzen und liefert anatomisch-realistische Deformationseffekte. Es ĂŒbertrifft damit die Genauigkeit frĂŒherer Methoden. Im nĂ€chsten Teil beschĂ€ftigt sich die Dissertation mit dem unĂŒberwachten Lernen aus 3D-OberflĂ€chendaten. Es werden neuartige Werkzeuge vorgestellt, die eine weitreichende Menge an Eingabedaten verarbeiten können, von aufgenommenen Gesichtsanimationen ĂŒber Ganzkörperbewegungen bis hin zu Muskel- und Kleidungsdeformationen. Um diese Anwendungsbreite zu erreichen stĂŒtzt sich die Arbeit auf die allgemeinen Konzepte der SpĂ€rlichkeit und LokalitĂ€t und bettet diese in einen mathematischen Optimierungsansatz ein. Abschließend zeigt die vorliegende Arbeit, wie diese Konzepte auch fĂŒr die Konstruktion von oberflĂ€chen-adaptiven Basisfunktionen ĂŒbertragen werden können. Dadurch können Anwendungen fĂŒr die Verarbeitung, Registrierung und Bearbeitung statischer OberflĂ€chenmodelle erschlossen werden
    corecore