47 research outputs found

    A Study Of Cooperative Spectrum Sharing Schemes For Internet Of Things Systems

    Get PDF
    The Internet of Things (IoT) has gained much attention in recent years with the massive increase in the number of connected devices. Cognitive Machine-to-Machine (CM2M) communications is a hot research topic in which a cognitive dimension allows M2M networks to overcome the challenges of spectrum scarcity, interference, and green requirements. In this paper, we propose a Generalized Cooperative Spectrum Sharing (GCSS) scheme for M2M communication. Cooperation extends the coverage of wireless networks as well as increasing their throughput while reducing the energy consumption of the connected low power devices. We study the outage performance of the proposed GCSS scheme for M2M system and derive exact expressions for the outage probability. We also analyze the effect of varying transmission powers on the performance of the system

    Esquemas de retransmissão baseados no protocolo decodifica-e-encaminha em redes cognitivas do tipo underlay

    Get PDF
    Orientador: José Cândido Silveira Santos FilhoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: O conceito de compartilhamento de espectro do tipo underlay tem sido proposto como uma técnica promissora para contornar o problema da escassez e da subutilização do espectro, permitindo que usuários não licenciados, chamados de usuários secundários, possam acessar simultaneamente uma banda licenciada, alocada aos usuários primários, desde que o nível de interferência sobre os mesmos seja mantido abaixo de um dado limiar aceitável. Entretanto, isso implica que a potência de transmissão na rede secundária deve ser restringida, comprometendo assim a confiabilidade e a cobertura da comunicação. A fim de contornar esse problema, técnicas de retransmissão cooperativa, as quais proveem um novo tipo de diversidade espacial, podem ser exploradas como um meio eficaz para melhorar o desempenho da rede secundária. De fato, a utilização conjunta de ambas as técnicas ¿ compartilhamento de espectro do tipo underlay e retransmissão cooperativa ¿ em redes cooperativas e cognitivas tem recebido especial atenção, já que a eficiência espectral do sistema e o desempenho da rede secundária podem ser melhorados significativamente. Esta tese apresenta quatro contribuições principais na referida área. Em particular, estuda-se o efeito conjunto de duas restrições de potência importantes sobre o desempenho de outage de redes cooperativas e cognitivas, especificamente, o nível máximo de potência interferente tolerada pelo receptor primário e o valor máximo de potência transmitida nos usuários secundários. Foca-se em esquemas de retransmissão baseados no protocolo decodifica-e-encaminha, abordando cenários em que o enlace direto entre fonte e destino está disponível para transmitir informação útil. Como uma primeira contribuição, analisa-se o desempenho de dois esquemas baseados no protocolo de retransmissão half-duplex incremental, os quais exploram a diversidade espacial dos enlaces diretos em redes cooperativas e cognitivas multiusuário. A segunda contribuição investiga o impacto de estimativas desatualizadas do canal sobre o mecanismo de seleção de destino para um desses esquemas anteriores, focando-se apenas no aspecto cooperativo da rede, ou seja, desconsiderando-se o uso de compartilhamento espectral. A terceira contribuição estuda o desempenho de redes cooperativas e cognitivas baseadas no modo full-duplex. Para esse cenário, avalia-se o impacto tanto da autointerferência residual, que é inerente ao modo full-duplex, bem como das restrições de potência que caracterizam o compartilhamento de espectro do tipo underlay. Como contribuição final, motivada pelo compromisso entre a perda de eficiência espectral e o problema da autointerferência residual, próprios dos modos half-duplex e full-duplex, respectivamente, propõe-se e analisa-se um esquema de transmissão adaptativo para redes cooperativas e cognitivas, através do qual, antes de cada processo de comunicação, um dos seguintes modos de transmissão é selecionado: retransmissão half-duplex, retransmissão full-duplex ou transmissão direta. Para todos os cenários considerados, expressões analíticas exatas para a probabilidade de outage são obtidas. Adicionalmente, uma análise assintótica é realizada a fim de caracterizar a ordem de diversidade e o comportamento de outage da rede secundária no regime assintótico de alta relação sinal-ruído. Simulações de Monte Carlo validam os resultados analíticos apresentadosAbstract: Underlay spectrum sharing has been proposed as a promising technique to alleviate the problem of spectrum scarcity and underutilization, by enabling secondary (unlicensed) users to concurrently access a licensed band, provided that the resulting interference on the primary (licensed) users remains below a given acceptable level. However, such a technique implies that the transmit power at the secondary network must be constrained, thereby compromising the communication reliability and coverage. To counteract this, cooperative relaying techniques, which provide a new form of spatial diversity, can be exploited as an effective means to boost the performance of the secondary network. Indeed, the joint use of both techniques¿underlay spectrum sharing and cooperative relaying¿in cognitive relaying networks has drawn special attention, since the overall spectral efficiency and the secondary-network performance can be significantly improved. This dissertation comprises four main contributions in this field. In particular, we examine the combined effect of two crucial power constraints on the outage performance of cognitive relaying networks, namely, the maximum tolerable interference power at the primary receiver and the maximum transmit power at the secondary users. We focus on relaying schemes operating under the decode-and-forward protocol, for scenarios in which the direct link between source and destination is available to convey useful information. As a first contribution, we analyze the performance of two incremental half-duplex relaying schemes, which exploit the spatial diversity of the direct links in a multiuser scenario. Our second contribution investigates the impact of outdated channel estimates on the destination-scheduling mechanism of one of those incremental schemes, from the perspective of a cooperative network only, that is, in the absence of spectrum sharing. The third contribution addresses cognitive full-duplex relaying networks. More specifically, we assess the system performance as a function of both the residual self-interference, which is inherent to the full-duplex relaying mode, and the underlay spectrum-sharing power constraints. As a final contribution, driven by the tradeoff between the spectral-efficiency loss and the residual self-interference problem, intrinsic to the half- and full-duplex relaying modes, respectively, we propose and analyze an adaptive transmission scheme whereby, before each communication process, one out of the following transmission modes is selected: half-duplex relaying, full-duplex relaying, or direct transmission. For all the considered scenarios, exact analytical expressions for the outage probability are derived. In addition, an asymptotic analysis is performed to obtain further insights on the diversity order and outage behavior of the secondary network at the high signal-to-noise ratio regime. Monte Carlo simulations corroborate the accuracy of the presented mathematical analysisDoutoradoTelecomunicações e TelemáticaDoutor em Engenharia ElétricaCAPE

    Performance study of an underlay cognitive radio network in the presence of co-channel interference

    Get PDF
    PhD ThesisMassive innovation in all aspects of the wireless communication network has been witnessed over the last few decades. The demand for data throughput is continuously growing, as such, the current regulations for allocating frequency spectrum are not able to respond to this exponential growth. Cognitive radio (CR), has been proposed as a solution to this problem. One of the possible scenarios of the implementation of CR is underlay cognitive radio. In this thesis the performance of an underlay cognitive radio network (UCRN) in the presence of the co-channel interference (CCI) is assessed. Firstly, the impact of CCI on the dual-hop cooperative UCRN is investigated over Rayleigh fading channels. In order to do this, the exact outage probability (OP), average error probability (AEP) and the ergodic capacity (EC) are studied. In addition, simple and asymptotic expressions for the OP and AEP are derived. Furthermore, the optimal power allocation is investigated to enhance the network performance. Moreover, the performance of a multi-user scenario is studied by considering the opportunistic SNR-based selection technique. Secondly, the effect of both primary network interference and CCI on the dual-hop UCRN over Rayleigh fading channels are studied. The equivalent signal-to-interference-plus-noise ratio (SINR) for this network scenario is obtained by considering multi-antenna schemes at all receiver nodes. The different signal combinations at the receiver nodes are investigated and compared, such as selection combining (SC) and maximum ratio combining (MRC) techniques. Then, the equivalent probability density function (PDF) and cumulative distribution function (CDF) of the network’s equivalent SINR are derived and discussed. Furthermore, expressions for the exact OP, AEP, and EC are derived and reviewed. In addition, asymptotic OP expressions are obtained for different case scenarios to gain an insight into the network parameters. Thirdly, multiple-input multiple-output (MIMO) UCRN is investigated under the influence of primary transmitter interference and CCI over Rayleigh fading channels. The transmit antenna selection and maximum ratio combining (TAS/MRC) techniques are considered for examining the performance of the secondary network. At first the equivalent SINR for the system is derived, then the exact and approximate expressions for the OP are derived and discussed. Fourthly, considering Nakagami-m fading channels, the performance of the UCRN is thoroughly studied with the consideration of the impact of primary network interference and CCI. The equivalent SINR for the secondary system is derived. Then, the system equivalent PDF and CDF are derived and discussed. Furthermore, the OP and AEP performances are investigated. Finally, for the cases mentioned above, numerical examples in conjunction with MatLab Monte Carlo simulations are provided to validate the derived results. The results show that CCI is one of the factors that severely reduces the UCRN performance. This can be more observable when the CCI power increases linearly with the transmission power of the secondary transmitter nodes. Furthermore, it was found that in a multi-user scenario the opportunistic SNR-based selection technique consideration can improve the performance of the network. Moreover, adaptive power allocation is found to give better results than equal power allocation. In addition, cooperative communication can be considered to be an effective way to combat the impact of transmission power limitation of the secondary network and interference power constraint. The multi-antenna schemes are another important consideration for enhancing the overall performance. In fact, despite the interference from the CCI and primary user sources, the multi-antennas scheme does not lose its advantage in the UCRN performance improvementHigher Committee for Education Development in Iraq (HCED). I am also grateful to the Ministry of Transportation and Communication, Kurdistan Regional Government-Iraq

    On the optimization of distributed compression in multirelay cooperative networks

    Get PDF
    In this paper, we consider multirelay cooperative networks for the Rayleigh fading channel, where each relay, upon receiving its own channel observation, independently compresses it and forwards the compressed information to the destination. Although the compression at each relay is distributed using Wyner-Ziv coding, there exists an opportunity for jointly optimizing compression at multiple relays to maximize the achievable rate. Considering Gaussian signaling, a primal optimization problem is formulated accordingly. We prove that the primal problem can be solved by resorting to its Lagrangian dual problem, and an iterative optimization algorithm is proposed. The analysis is further extended to a hybrid scheme, where the employed forwarding scheme depends on the decoding status of each relay. The relays that are capable of successful decoding perform a decode-and-forward (DF) scheme, and the rest conduct distributed compression. The hybrid scheme allows the cooperative network to adapt to the changes of the channel conditions and benefit from an enhanced level of flexibility. Numerical results from both spectrum and energy efficiency perspectives show that the joint optimization improves efficiency of compression and identify the scenarios where the proposed schemes outperform the conventional forwarding schemes. The findings provide important insights into the optimal deployment of relays in a realistic cellular network

    Research on Outage Performance Optimization of Cognitive Relay Network with Cooperative Sensing

    Get PDF
    In this work, cooperative spectrum sensing technology is applied to optimize the outage probability of cognitive relay networks. The outage performance optimization problem of cognitive relay networks is resolved by designing the sensing time and fusion rule threshold appropriately. The outage probability by high signal to noise ratio (SNR) approximation under Rayleigh fading channels is derived theoretically, and the solution of optimal fusion rule threshold is given. Theoretical analysis and simulation results illustrate that the optimal sensing time and fusion rule threshold exist to minimize the outage probability. The outage performance of cognitive relay networks is significantly improved under the assistance of cooperative sensing compared with that of non-cooperative sensing scheme

    On The Performance of Underlay Relay Cognitive Networks

    Get PDF
    The bit error rate (BER) performance of underlay relay cognitive networks in the presence of Rayleigh fading is thoroughly analyzed in this paper. New exact and asymptotic analytic expressions under consideration of both interference power constraint and maximum transmit power constraint are derived in closed-form and are extensively corroborated by Monte-Carlo simulations. These expressions facilitate in evaluating effectively the network performance behaviour in key operation parameters as well as in optimizing system parameters. A multitude of analytical results expose that underlay relay cognitive networks experience the performance saturation phenomena while their performance considerably depends on the number of hops for the linear network model. Additionally, optimum relay position is significantly dependent of maximum transmit power, maximum interference power, and licensee location. Moreover, the appropriate order of locating unlicensees with different maximum transmit power levels can dramatically improve the network performance

    Research on Outage Performance Optimization of Cognitive Relay Network with Cooperative Sensing

    Full text link

    Rate enhancement and multi-relay selection schemes for application in wireless cooperative networks

    Get PDF
    In this thesis new methods are presented to achieve performance enhancement in wireless cooperative networks. In particular, techniques to improve transmission rate, mitigate asynchronous transmission and maximise end-to-end signal-to-noise ratio are described. An offset transmission scheme with full interference cancellation for a two-hop synchronous network with frequency flat links and four relays is introduced. This approach can asymptotically, as the symbol block size increases, achieve maximum transmission rate together with full cooperative diversity provided the destination node has multiple antennas. A novel full inter-relay interference cancellation method that also achieves asymptotically maximum rate and full cooperative diversity is then designed which only requires a single antenna at the destination node. Extension to asynchronous networks is then considered through the use of orthogonal frequency division multiplexing (OFDM) type transmission with a cyclic prefix, and interference cancellation techniques are designed for situations when synchronization errors are present in only the second hop or both the first and second hop. End-to-end bit error rate evaluations, with and without outer coding, are used to assess the performance of the various offset transmission schemes. Multi-relay selection methods for cooperative amplify and forward type networks are then studied in order to overcome the degradation of end-to-end bit error rate performance in single-relay selection networks when there are feedback errors in the destination to relay node links. Outage probability analysis for two and four relay selection is performed to show the advantage of multi-relay selection when no interference occurs and when adjacent cell interference is present both at the relay nodes and the destination node. Simulation studies are included which support the theoretical expressions. Finally, outage probability analysis of a cognitive amplify and forward type relay network with cooperation between certain secondary users, chosen by single and multi-relay (two and four) selection is presented. The cognitive relays are assumed to exploit an underlay approach, which requires adherence to an interference constraint on the primary user. The relay selection is performed either with a max-min strategy or one based on maximising exact end-to-end signal-to-noise ratio. The analyses are again confirmed by numerical evaluations
    corecore