2,357 research outputs found

    Performance evaluation of an efficient counter-based scheme for mobile ad hoc networks based on realistic mobility model

    Get PDF
    Flooding is the simplest and commonly used mechanism for broadcasting in mobile ad hoc networks (MANETs). Despite its simplicity, it can result in high redundant retransmission, contention and collision in the network, a phenomenon referred to as broadcast storm problem. Several probabilistic broadcast schemes have been proposed to mitigate this problem inherent with flooding. Recently, we have proposed a hybrid-based scheme as one of the probabilistic scheme, which combines the advantages of pure probabilistic and counter-based schemes to yield a significant performance improvement. Despite these considerable numbers of proposed broadcast schemes, majority of these schemes’ performance evaluation was based on random waypoint model. In this paper, we evaluate the performance of our broadcast scheme using a community based mobility model which is based on social network theory and compare it against widely used random waypoint mobility model. Simulation results have shown that using unrealistic movement pattern does not truly reflect on the actual performance of the scheme in terms of saved-rebroadcast, reachability and end to end delay

    Performance evaluation of flooding in MANETs in the presence of multi-broadcast traffic

    Get PDF
    Broadcasting has many important uses and several mobile ad hoc networks (MANETs) protocols assume the availability of an underlying broadcast service. Applications, which make use of broadcasting, include LAN emulation, paging a particular node. However, broadcasting induces what is known as the "broadcast storm problem" which causes severe degradation in network performance, due to excessive redundant retransmission, collision, and contention. Although probabilistic flooding has been one of the earliest suggested approaches to broadcasting. There has not been so far any attempt to analyse its performance behaviour in MANETs. This paper investigates using extensive ns-2 simulations the effects of a number of important parameters in a MANET, including node speed, pause time and, traffic load, on the performance of probabilistic flooding. The results reveal that while these parameters have a critical impact on the reachability achieved by probabilistic flooding, they have relatively a lower effect on the number of saved rebroadcast packets

    Improvement to efficient counter-based broadcast scheme through random assessment delay adaptation for MANETs

    Get PDF
    Flooding, the process in which each node retransmits every uniquely received packet exactly once is the simplest and most commonly used mechanism for broadcasting in mobile ad hoc networks (MANETs). Despite its simplicity, it can result in high redundant retransmission, contention and collision, a phenomenon collectively referred to as broadcast storm problem. To mitigate this problem, several broadcast schemes have been proposed which are commonly divided into two categories; deterministic schemes and probabilistic schemes. Probabilistic methods are quite promising because they can reduce the number of redundant rebroadcast without any control overhead. In this paper, we investigate the performance of our earlier proposed efficient counter-based broadcast scheme by adapting its random assessment delay (RAD) mechanism to network congestion. Simulation results revealed that this simple adaptation achieves superior performance in terms of saved rebroadcast, end-to-end delay and reachability

    In-Time UAV Flight-Trajectory Estimation and Tracking Using Bayesian Filters

    Get PDF
    Rapid increase of UAV operation in the next decade in areas of on-demand delivery, medical transportation services, law enforcement, traffic surveillance and several others pose potential risks to the low altitude airspace above densely populated areas. Safety assessment of airspace demands the need for a novel UAV traffic management (UTM) framework for regulation and tracking of the vehicles. Particularly for low-altitude UAV operations, quality of GPS measurements feeding into the UAV is often compromised by loss of communication link caused by presence of trees or tall buildings in proximity to the UAV flight path. Inaccurate GPS locations may yield to unreliable monitoring and inaccurate prognosis of remaining battery life and other safety metrics which rely on future expected trajectory of the UAV. This work therefore proposes a generalized monitoring and prediction methodology for autonomous UAVs using in-time GPS measurements. Firstly, a typical 4D smooth trajectory generation technique from a series of waypoint locations with associated expected times-of-arrival based on B-spline curves is presented. Initial uncertainty in the vehicle's expected cruise velocity is quantified to compute confidence intervals along the entire flight trajectory using error interval propagation approach. Further, the generated planned trajectory is considered as the prior knowledge which is updated during its flight with incoming GPS measurements in order to estimate its current location and corresponding kinematic profiles. Estimation of position is denoted in dicrete state-space representation such that position at a future time step is derived from position and velocity at current time step and expected velocity at the future time step. A linear Bayesian filtering algorithm is employed to efficiently refine position estimation from noisy GPS measurements and update the confidence intervals. Further, a dynamic re-planning strategy is implemented to incorporate unexpected detour or delay scenarios. Finally, critical challenges related to uncertainty quantification in trajectory prognosis for autonomous vehicles are identified, and potential solutions are discussed at the end of the paper. The entire monitoring framework is demonstrated on real UAV flight experiments conducted at the NASA Langley Research Center

    The Random Waypoint Mobility Model with Uniform Node Spatial Distribution

    Get PDF
    In this paper, we solve a long standing open problem by presenting two versions of the well-known random waypoint mobility model in bounded regions generating a uniform steadystate node spatial distribution. In the first version, named temporal-RWP, we exploit the temporal dimension of node mobility and achieve uniformity by continuously changing the speed of a mobile node as a function of its location and of the density function of trajectories in the movement region R. In the second version, named spatial-RWP, we instead exploit the spatial dimension and achieve uniformity by selecting waypoints according to a suitably defined mix of probability density functions. Both proposed models can be easily incorporated in wireless network simulators, and are thus of practical use. The RWP models presented in this paper allow for the first time completely removing the well-known border effect causing possible inaccuracies in mobile network simulation, thus completing the picture of a "perfect" simulation methodology drawn in existing literature
    • …
    corecore