931 research outputs found

    Is Explicit Congestion Notification usable with UDP?

    Get PDF
    We present initial measurements to determine if ECN is usable with UDP traffic in the public Internet. This is interesting because ECN is part of current IETF proposals for congestion control of UDPbased interactive multimedia, and due to the increasing use of UDP as a substrate on which new transport protocols can be deployed. Using measurements from the author’s homes, their workplace, and cloud servers in each of the nine EC2 regions worldwide, we test reachability of 2500 servers from the public NTP server pool, using ECT(0) and not-ECT marked UDP packets. We show that an average of 98.97% of the NTP servers that are reachable using not-ECT marked packets are also reachable using ECT(0) marked UDP packets, and that ~98% of network hops pass ECT(0) marked packets without clearing the ECT bits. We compare reachability of the same hosts using ECN with TCP, finding that 82.0% of those reachable with TCP can successfully negotiate and use ECN. Our findings suggest that ECN is broadly usable with UDP traffic, and that support for use of ECN with TCP has increased

    Raising the Datagram API to Support Transport Protocol Evolution

    Get PDF
    Some application developers can wield huge resources to build new transport protocols, for these developers the present UDP Socket API is perfectly fine. They have access to large test beds and sophisticated tools. Many developers do not have these resources. This paper presents a new high-level Datagram API that is for everyone else, this has an advantage of offering a clear evolutionary path to support new requirements. This new API is needed to move forward the base of the system, allowing developers with limited resources to evolve their applications while accessing new network services

    ABC: A Simple Explicit Congestion Controller for Wireless Networks

    Full text link
    We propose Accel-Brake Control (ABC), a simple and deployable explicit congestion control protocol for network paths with time-varying wireless links. ABC routers mark each packet with an "accelerate" or "brake", which causes senders to slightly increase or decrease their congestion windows. Routers use this feedback to quickly guide senders towards a desired target rate. ABC requires no changes to header formats or user devices, but achieves better performance than XCP. ABC is also incrementally deployable; it operates correctly when the bottleneck is a non-ABC router, and can coexist with non-ABC traffic sharing the same bottleneck link. We evaluate ABC using a Wi-Fi implementation and trace-driven emulation of cellular links. ABC achieves 30-40% higher throughput than Cubic+Codel for similar delays, and 2.2X lower delays than BBR on a Wi-Fi path. On cellular network paths, ABC achieves 50% higher throughput than Cubic+Codel

    Multimedia congestion control: circuit breakers for unicast RTP sessions

    Get PDF
    The Real-time Transport Protocol (RTP) is widely used in telephony, video conferencing, and telepresence applications. Such applications are often run on best-effort UDP/IP networks. If congestion control is not implemented in these applications, then network congestion can lead to uncontrolled packet loss and a resulting deterioration of the user's multimedia experience. The congestion control algorithm acts as a safety measure by stopping RTP flows from using excessive resources and protecting the network from overload. At the time of this writing, however, while there are several proprietary solutions, there is no standard algorithm for congestion control of interactive RTP flows. This document does not propose a congestion control algorithm. It instead defines a minimal set of RTP circuit breakers: conditions under which an RTP sender needs to stop transmitting media data to protect the network from excessive congestion. It is expected that, in the absence of long-lived excessive congestion, RTP applications running on best-effort IP networks will be able to operate without triggering these circuit breakers. To avoid triggering the RTP circuit breaker, any Standards Track congestion control algorithms defined for RTP will need to operate within the envelope set by these RTP circuit breaker algorithms

    Mobile Networking

    Get PDF
    We point out the different performance problems that need to be addressed when considering mobility in IP networks. We also define the reference architecture and present a framework to classify the different solutions for mobility management in IP networks. The performance of the major candidate micro-mobility solutions is evaluated for both real-time (UDP) and data (TCP) traffic through simulation and by means of an analytical model. Using these models we compare the performance of different mobility management schemes for different data and real-time services and the network resources that are needed for it. We point out the problems of TCP in wireless environments and review some proposed enhancements to TCP that aim at improving TCP performance. We make a detailed study of how some of micro-mobility protocols namely Cellular IP, Hawaii and Hierarchical Mobile IP affect the behavior of TCP and their interaction with the MAC layer. We investigate the impact of handoffs on TCP by means of simulation traces that show the evolution of segments and acknowledgments during handoffs.Publicad

    Evaluating the Benefits: Quantifying the Effects of TCP Options, QUIC, and CDNs on Throughput

    Full text link
    To keep up with increasing demands on quality of experience, assessing and understanding the performance of network connections is crucial for web service providers. While different measures, like TCP options, alternative transport layer protocols like QUIC, or the hosting of services in CDNs, are expected to improve connection performance, no studies are quantifying such impacts on connections on the Internet. This paper introduces an active Internet measurement approach to assess the impacts of mentioned measures on connection performance. We conduct downloads from public web servers considering different vantage points, extract performance indicators like throughput, RTT, and retransmission rate, and survey speed-ups due to TCP option usage. Further, we compare the performance of QUIC-based downloads to TCP-based downloads considering different option configurations. Next to significant throughput improvements due to TCP option usage, in particular TCP window scaling, and QUIC, our study shows significantly increased performance for connections to domains hosted by different giant CDNs.Comment: Presented at the ACM/IRTF Applied Networking Research Workshop 2023 (ANRW23

    MUST, SHOULD, DON'T CARE: TCP Conformance in the Wild

    Full text link
    Standards govern the SHOULD and MUST requirements for protocol implementers for interoperability. In case of TCP that carries the bulk of the Internets' traffic, these requirements are defined in RFCs. While it is known that not all optional features are implemented and nonconformance exists, one would assume that TCP implementations at least conform to the minimum set of MUST requirements. In this paper, we use Internet-wide scans to show how Internet hosts and paths conform to these basic requirements. We uncover a non-negligible set of hosts and paths that do not adhere to even basic requirements. For example, we observe hosts that do not correctly handle checksums and cases of middlebox interference for TCP options. We identify hosts that drop packets when the urgent pointer is set or simply crash. Our publicly available results highlight that conformance to even fundamental protocol requirements should not be taken for granted but instead checked regularly
    • …
    corecore