

Jones, T., Fairhurst, G. and Perkins, C. (2017) Raising the Datagram API to Support

Transport Protocol Evolution. In: 1st International Workshop on the Future of Internet

Transport, Stockholm, Sweden, 12-15 June 2017, ISBN 9783901882944.

© IFIP, 2017. This is the author's version of the work. It is posted here by

permission of IFIP for your personal use. Not for redistribution. The definitive

version was published in 1st International Workshop on the Future of Internet Transport,

Stockholm, Sweden, 12-15 June 2017,

http://dl.ifip.org/db/conf/networking/networking2017/1570347877.pdf.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/140484/

Deposited on: 2 May 2017

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dl.ifip.org/db/conf/networking/networking2017/1570347877.pdf
http://eprints.gla.ac.uk/140484/
http://eprints.gla.ac.uk/140484/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Raising the Datagram API to Support Transport
Protocol Evolution

Tom Jones, Gorry Fairhurst
University of Aberdeen, Aberdeen, U.K.

Email: {tom, gorry}@erg.abdn.ac.uk

Colin Perkins
University of Glasgow, Glasgow, U.K.

Email: csp@csperkins.org

Abstract—
Some application developers can wield huge resources to build

new transport protocols, for these developers the present UDP
Socket API is perfectly fine. They have access to large test
beds and sophisticated tools. Many developers do not have these
resources. This paper presents a new high-level Datagram API
that is for everyone else, this has an advantage of offering a
clear evolutionary path to support new requirements. This new
API is needed to move forward the base of the system, allowing
developers with limited resources to evolve their applications
while accessing new network services.

I. INTRODUCTION

The Berkeley Sockets Application Programming Interface
(API) is the main interface to the network for developers.
It has been hugely successful, with few changes to its core
semantics over its 35 year history. The API has scaled to
support applications running services over networks that could
not have been envisaged during its inception, at a scale that
could not have been imagined.

Application protocols using the socket API may choose to
build on top of a stream protocol, running over TCP, or a
datagram protocol using User Datagram Protocol (UDP). UDP
is the simplest transport [1], offering a minimal protocol over
IP, with service multiplexing with port numbers and optional
checksums with best effort unreliable delivery. The UDP
socket API provides a very simple interface for applications
to send and receive datagrams, with the ability to control the
options/parameters required to build applications [2].

While this model has been a success, the socket API is now
showing its age. It is becoming clear that it does not offer a
clear evolutionary path to support new requirements, as needs
of applications change, and as the network changes beneath.
There are two major areas where this has become visible. First,
as more sophisticated applications are developed, and as the
complexity of the network grows, we increasingly see that the
Datagram socket API does not provide a sufficiently expressive
interface. For some applications, the connection-less unreliable
datagram service is a core feature. Others would prefer more
transport support, but must use UDP because they require
partial reliability, control of transmission timing, non-standard
congestion control, multicast, or any of the other features that
are only possible with UDP in the present API. The API is
increasingly baroque (e.g., using obscure setsockopt()

calls to control important semantics) but also overly simplistic,
pushing applications to implement transport features them-
selves [3].

Secondly, there is an increasing trend to see UDP not as a
transport protocol, but as a demultiplexing substrate layer that
supports the deployment of new transport protocols [4] [3].
This is a reaction to ossification of the network: the intended
transport demultiplexing point is the Protocol field in the IPv4
header, or the Next Header field in IPv6, but this in unusable in
practice since use of values identifying transports other than
TCP and UDP will result in firewalls dropping the packet.
Accordingly, the transport demultiplex is moving up the stack,
with dynamic binding of identifiers to transport protocols using
UDP port numbers negotiated by out-of-band signalling [5].

We face new sophisticated applications [4] driving a grow-
ing volume of UDP traffic in the Internet, and the emergence of
UDP as a core protocol for evolving datagram transport [6], an
important question emerges: is the current network transport
API fit for purpose?

This paper explores whether the simple UDP socket API is
sufficient for the next step in evolution of Internet Transport,
or whether applications can benefit from a higher-level API
that builds upon thirty years experience of using the network.
We examine whether this new API could open-up access to
network functions (such as Quality of Service (QoS), Explicit
Congestion Notifications (ECN), control of packet size) help
enable session level functions (such as path selection for multi-
homing, mobility and firewall punching), and greater support
for fault reporting in increasingly complex network topologies.

This work is part of a larger effort designing, implementing
and attempting to deploy new transport services and APIs. This
includes the IETF Transport Services (TAPS) working group,
defining and documenting the transport services available for
applications; the IETF QUIC and RTCWEB working groups,
defining new transports running over UDP; and research
projects such as the EU NEAT [7] project that is building
a system to enable transport evolution and ease deployment.

The next section identifies some issues applications have
using the UDP Socket API. Section III examines how changes
in the protocol stack above and below the current API can help
applications evolve. Section IV presents an API to address the
issues raised. Section V discusses how enabling evolution is
only possible with a new API. The paper concludes in Sections
VI and VII with a brief look to the future and discussion.ISBN 978-3-901882-94-4 c© 2017 IFIP

II. BACKGROUND

The Socket API closely models the file system API. Calls
to send and receive are mapped to performing read
and write calls on the socket for the network connection.
Datagram-orientated protocols are modeled as atomic read
and write socket operations that either succeed or fail
depending on the buffer size. UDP is offered in this API
as either a connected or unconnected transport, the default
unconnected state allows a sender to send datagrams to an IP
address. Connecting a UDP socket causes the socket to pass
ICMP errors up to the application. Connections have no side
effects on the wire, offering only a shortcut to applications by
using the explicit connected address for datagrams [3].

The UDP API offers only a few methods to access its mini-
mal services. Applications can create a socket, look up a host,
connect, set options and send and receive data, represented by
the pseudo-code for a typical client in Listing 1.
int main()
{
int sockfd, rv, numbytes;
struct addrinfo hints, *servinfo, *p;

hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
if ((rv = getaddrinfo(argv[1], SPORT, &hints, &

servinfo)) != 0) {
fprintf(stderr, "getaddrinfo: %s\n",

gai_strerror(rv));
return 1;

}
while (true) {

if ((numbytes = sendto(sockfd, "hello",
strlen("hello"), 0,

p->ai_addr, p->ai_addrlen)) == -1) {
perror("talker: sendto");
exit(1);

}
if ((numbytes = recvfrom(sockfd, buf,

MAXBUFLEN-1 , 0,
(struct sockaddr *)&their_addr, &

addr_len)) == -1) {
perror("recvfrom");
exit(1);

}
}
close(sockfd);
return 0;

}

Listing 1. Example of a client application using the UDP Socket API. (The
example client, looks up the remote host, chooses an IP address and settles
into a loop of sending and receiving data until the application completes.)

An application may modify protocol options via the
setsockopt/getsockopt API calls. These provide the
only way to interact with the lower networking stack. Com-
monly used options allow control of the differentiated services
code point (DSCP) used, setting the ECN field, setting the hop
count for the IP datagram, the link maximum transmission unit
(MTU), and the “don’t fragment” (DF) bit in the IP header.

The setsockopt API allows applications to set options,
but provides no mechanism for discovering whether they will
work and no path for falling back to options known to always
work. This can make it dangerous to use QoS or ECN: if the
application has to provide fallback code it is more likely it
will stick to a safe set of values. Further, the set of options has
evolved over time, and is inconsistent between platforms and
often presents variants of the same function. This complicates
application portability between platforms. Furthermore, the

same setsockopt API is used to control features that
are semantically not socket options [2]. For example, the
IP_ADD_MEMBERSHIP option triggers an IGMP join of a
multicast group, with semantic closer to that of connect().

A. What features are missing from the Sockets API?

Establishing Connectivity: TCP-based applications tend to
use one of a small number of protocols, e.g, HTTP, SSH, FTP,
and typically run in a client-server manner. The connect(),
listen(), and accept() API fits this use case cleanly,
and is straightforward for Network Address Port Translation
(NAPT) or firewall traversal: ports are opened in response
to outgoing connection establishment packets, for the 5-tuple
representing the connection; the traffic is inspected to ensure
it looks like the corresponding protocol; and the connection is
closed when a FIN is seen (or after a timeout).

There are a diverse set of Applications built on UDP
that need themeselves to perform some form of connection
establishment. Many more protocols are in use, communi-
cation patterns are more varied and often peer-to-peer, and
the stateless nature of the transport protocol means that mid-
dleboxes that track transport protocol state to maintain holes
must resort to using timers to keep the firewall open. This
environment makes it likely that UDP-based applications will
encounter connectivity issues. This is especially true when the
remote endpoint is a peer that is also behind a NAPT. One
solution to this problem uses the combination of STUN [8]
to determine NAPT binding and probe connectivity, TURN
relays as dynamically configured proxies for UDP [9] or
TCP [10] flows, the Interactive Connectivity Establishment
(ICE) algorithm [11] to categorise network impediments and
systematically probe connectivity, and a relayed signalling
protocol to rendezvous with the remote host and exchange
candidate addresses for connectivity. While the signalling is
likely inherently application specific, there is scope to imple-
ment the other functions generically, as a path layer below the
socket API, rather than have each application implement the
entire complex NAPT traversal stack.1

Support for multiple interfaces: An application running
on a multihomed host has to account for the presence of
multiple interfaces and that those interfaces will vary in
properties and connectivity over time (mobility). The present
API does not make it easy for applications to discover the
local interfaces or their properties, it requires application
level methodologies to discover what is working. Applications
must determine whether network information gathered on one
interface is valid on another interface. Issues can arise with
locality if name servers are used across domains for accessing
resources. DNS resolution on multihomed systems can also
be problematic [13]. The interface used for name resolution
(getaddrinfo()) does not support multiple interfaces, and

1This can be viewed as a generalisation of the happy eyeballs connection
racing technique [12] used by TCP applications to probe IPv4 and IPv6
connectivity. That, too, would benefit from a consistent implementation in
the socket layer.

complications can result with geographic load balancing and
applications that require mobility.

Control over quality of service and reliability: TCP provides
a reliable, ordered, byte stream service, that is subject to
head-of-line blocking while waiting for retransmissions of
lost packets. There is no portable way to inspect the receive
buffer, or access data out of order [14]. When needed, UDP-
based applications must implement (partial) reliability above
the API. The developer has to take responsibility for building
a solid network system [3].

Congestion control: For TCP, congestion control is assumed
to take place below the Sockets API, and there is no interface
to select the algorithm, or query congeston state. For UDP-
based application, congestion control must be implemented
above the API, with no support from the socket.

In summary, the socket API has been a companion for
developers writing application protocols for decades, but the
interface is starting to show its age. It provides a poor API
for many important features, and requires applications to im-
plement other features in their entirity. To address these issues
libraries can be integrated into an application, but integrating
such a library requires modifications to the code base, and
the libraries event model has to be made compatible with
the application. Supporting each and any new feature means
the application has to integrate more with libraries that help
support them, with a corresponding increase in complexity and
maintenance costs. A new, standard, API is needed.

III. RAISE THE DATAGRAM API

The current socket API is too low level. Even applications
that need direct access to the network can benefit from a higher
level Datagram API. By placing commonly needed functions
below this API, applications can specify what they want from
the stack, but allow the system below the API to perform
the actions needed to realise a service. However, it is not
immediately obvious what of the set of functions identified
in Section II-A should lie below a new Datagram API, and
which should remain in the application. On the one hand, part
of the success of UDP was an API that enables application
choice of how to interact with the network. On the other hand,
applications increasingly require solutions to the same set of
problems and implementing these below the API can benefit
from wider context of the network paths and interfaces, and
allow mechanisms to evolve independently of applications.

We use the following principles to guide our choice of which
functions should be placed below the Datagram API:

1) An application using the new API that does nothing new,
should be able to at least receive similar service to that
of the socket API.

2) Commonly needed functions should be placed below
the API when these are automatable (do not require
application decisions).

3) Functions where the preference can be expressed as a
policy can also be placed below the API.

4) Functions that rely on application algorithms or detailed
knowledge of trade-offs relating to data should be imple-

mented above the API [3] (e.g., choice of codec to meet
congestion control constraints in a conferencing appli-
cation, or how to trade loss vs. capacity constraints).

A richer API should allow an application to request a set
of abstract properties for the transport service it desires (e.g.,
requiring a datagram service, whether high capacity is needed,
whether there is benefit from low latency, whether low cost
is preferred, etc). Understanding application needs can help a
Datagram API because it can then automate functions that are
hard for an application to optimise.

A. Below the Datagram API

A higher level API can reduce the volume of code required
to build an Internet application, it can also significantly reduce
the complexity the application has to manage, providing a
starting point to automate appropriate choices below the API.

The system below the API needs to interpret properties from
the application together with system wide properties. Turning
these into concrete actions requires a policy system to select
protocol mechanisms, help discover interfaces and inform
parameter choices. For example, a video streaming application
could request properties that indicate a minimum capacity
required for the datagram service and QoS preferences to
minimise latency while constraining cost. Listing 2 shows an
example JSON policy file that indicates a QoS Live Video
precedence.
{

"transport": [
{

"value": "Datagram", "precedence": 1
},

],
"qos": [
{

"value": "Interactive Video", "precedence":
1

},
{

"value": "Live Video", "precedence": 2
}

]
"network": [
{

"value": "cost", "precedence": 1
},
{

"value": "capacity", "precedence": 2
}

]
}

Listing 2. Example JSON file describing a NEAT Abstract Policy

To provide network context for functions below the API, in-
formation needs to be gathered about the properties of network
paths, and network service interfaces. This knowledge base can
be related to policy and application requirements to enable the
application to rely on the system making good choices about
how to use the network. At the simplest level, this implies
understanding of available network service interfaces – by
gathering information (e.g., MTU, line rate, address) about
local physical and virtual interfaces (e.g., across tunnels or
source addresses that bind to provisioning domains).

TCP maintains information about the paths that have been
used from an endpoint, and similar data may be collected for
use by UDP – such as the path MTU, capacity recently used,

etc.). This can also help eliminate transport candidates that
include protocols that are known not to be supported on a
specific path. Further information may be gleaned from the
experience of protocols using a path, including experienced
round-trip time (RTT) and capacity insight from coupled
congestion control [15]. Other functions could also be auto-
mated here, such as NAPT keep-alive and black-hole detection,
easing the tasks of finding a candidate path, failover between
paths, concurrent use of multiple paths.

We also note that application developers and users need to
be able to understand the decisions made on behalf of the
application. While most of the time it is expected that good
decisions will be taken, there is a need to understand why a
particular policy or application property resulted in a particular
choice. This supports troubleshooting and allows polices to be
refined when needed – this in itself is valuable compared to the
current information made available by the UDP socket API.

B. Above the Datagram API

We recognise that some functions cannot be easily migrated
below the API. While datagram congestion control can benefit
from standard mechanisms/algorithms, the details are often
linked to application design; applications have to provide their
own congestion control. This function is expected to remain
above the API. In contrast, the system below the API could
offer circuit breaker functions when required to control the
envelope of the capacity consumed by an application [3].

NAPT traversal could be automated for simple cases, but
many applications need complex processing to finally select
amongst a set of transport candidates. This is often compli-
cated by the need to interact with rendezvous points, signalling
intermediaries and to understand session-level negotiation di-
alogues. For these reasons more sophisticated applications are
likely to continue to utilise ICE libraries to perform the NAPT
traversal. None-the-less the availability of information from
below the API (such as speed, cost, reliability) can help select
candidates. The automation of path-related functions such as
keep-alive and path MTU discovery can eliminate features that
otherwise would need to be implemented above the API by
an application.

The transport 5-tuple of source IP, port, destination IP, port
and transport protocol is used to identify datagrams forming
a flow. If an application is multi-homed or mobile between
multiple network interfaces the 5-tuple cannot be used to
identify the endpoint. Mobility between interfaces requires
context (including a connection_ID) beyond individual flows
and can outlive transport usage, and as such is primarily
an application function, although such mechanisms may take
advantage of context information gathered below the API.

C. Traversing the Datagram API

Some functions require cooperation between the application
and transport to be effective, and straddle the Datagram API.

An example might be congestion control for an interactive
video conference. This has strict timing constraints: audio
frames must be sent every 20ms and video frames every 1/60th

of a second, but there is some flexibility to change what is
being sent, if not when, but this requires cooperation of the
media codecs. Real-time performance offers the application to
be tightly coupled with the congestion controller, and for both
the application to respect the congestion constraints and the
congestion control to respect application limitations.

IV. THE DATAGRAM API FOR THE NEAT SYSTEM

This section provides a concrete example of some of the API
aspects discussed in the paper, based on the open source NEAT
System [16], developed as part of the EU NEAT project [17].
Designed as a replacement for the socket API, this provides a
one-sided change to the transport API at the sender.

The new API offers applications access to abstract transport
services. This allows selection between the available transport
protocols including TCP, SCTP, SCTP/UDP, UDP and UDP-
Lite via a single unified API. Mechanisms beneath the API,
provide many functions including help to discover the set of
protocols that may work across an Internet path.

A simple example in Listing 3 illustrates the lifetime of an
application using the NEAT System. The application creates
a NEAT context, within which it then creates a NEAT flow,
using application policies passed in JSON to describe the
abstract properties it requires or desires. The Policy Manager
combines these policies with a global configured policy to
inform its decisions, e.g., to generate a list of transport
candidates. The NEAT Characteristic Information Base (CIB)
is populated with information about the network interfaces and
paths allowing decisions to also consider network, path and
transport statistics.
static struct neat_flow_operations ops;
static struct neat_ctx *ctx = NULL;
static struct neat_flow *flow = NULL;

ctx = neat_init_ctx()
flow = neat_new_flow(ctx)
prop = "(see Listing 2)";
neat_set_property(ctx, flow, &prop)
ops.on_writable = on_writable;
ops.on_readable = on_readable;
ops.on_error = on_error;

neat_set_operations(ctx, flow, &ops)
neat_open(ctx, flow, hostname, port)
neat_start_event_loop(ctx, NEAT_RUN_DEFAULT);

static neat_error_code
on_writable(struct neat_flow_operations *opCB)
{

neat_write(opCB->ctx, opCB->flow, buf)
return NEAT_OK;

}

static neat_error_code
on_readable(struct neat_flow_operations *opCB)
{

neat_read(opCB->ctx, opCB->flow, buf)
return NEAT_OK;

}

Listing 3. NEAT Example Application listing

Rather than an imperative polling-based socket API, an ap-
plication uses a callback-based API to access the NEAT
System. It therefore needs to provide a set of callback han-
dlers for each NEAT Flow. In Listing 3, the application
sets up the on_writeable callback. The application calls
neat_connect with the name and port of a listening server.

The key difference between Listing 3 and Listing 1, is
that the NEAT System performs common network actions
automatically on behalf of the application. The example policy,
Listing 2, illustrates a high level abstract transport request,
that can inform selection of an appropriate DSCP, and help
identity transport candidates when multiple network interfaces
are active. Once created, a NEAT flow is comparable to a
socket, but offers much more utility, using the callback-based
API to call an application on network events or data.

For connection-oriented protocols the NEAT System can
select an appropriate transport configuration for a flow using
Happy-Eyeballs selection logic [18] to choose between trans-
port candidates and instantiate a concrete Operating System
socket. The process of selecting a transport is different for a
Datagram services that do not have a connection-setup (e.g.
UDP or UDP-Lite). It is not possible for the NEAT System
to know whether a datagram flow has suffered a connectivity
failure (e.g., by expiry of NAPT state, routing changes, or from
choice of a DiffServ Code Point that is not available). Such
information is only known at the application layer through the
reception of receiver-generated feedback messages.

Datagram applications can use the Happy Applications
mechanism to register a periodic callback. This allows mecha-
nisms below the API to query the application, asking whether
it is ’happy’ with the progress of a NEAT flow. This allows
datagram applications to perform automatic selection and
fallback, handled by the NEAT System Because the appli-
cation decides what makes it ‘happy’, it can trigger selection
mechanisms based on application level criteria. If a certain
capacity were requested and latency and the chosen transport
candidate was not able to satisfy this, the system now has
the correct signals to choose a second transport candidate.
On completion, the application may retrieve NEAT Flow
parameters to determine the transport state (e.g., addresses,
port numbers, DSCP, etc).

The NEAT System leaves implementation of support for
mobility and/or ICE to datagram applications. Similarly, li-
braries to support application-oriented functions, such as the
Real Time Protocol (RTP), can be used over the NEAT API.

V. SUPPORTING PROTOCOL EVOLUTION

One key advantage of raising the API is the ability to
enable protocol evolution [16] in support of new application
requirements. Datagram transport protocols can be developed
independently of the kernel, and our more expressive API
eases this evolution. It also enables innovation in the use
of the network, by easing the introduction of new protocols
and mechanisms, and by taking advantage of these when the
network becomes available. A particular supporting protocol
may only be available in a few networks or supported by
limited equipment, which might be insufficient to justify
inclusion in every application, but the features it offers may
be attractive across a range of application when it happens to
be supported, which could justify inclusion below the API.

We consider three examples of mechanisms below the
Datagram API: Protocols to supply provisioning domain (PvD

[19]) information, protocols to communicate path information
(PLUS [20]), and an extension to UDP to permit transport
of options. All are work-in-progress in the IETF, available
as Internet Drafts, but none are as yet fully specified nor
implemented.

There are a growing number of devices that are capable
of connecting to multiple network services. These devices
may have multiple physical interfaces, and additional could
support virtual interfaces (e.g., able to send using multiple
IPv6 address prefixes). PvD is an architecture for endpoints
in a multiple network interface environment to discover net-
work configuration information. A PvD-aware endpoint can
use a protocol to discover authoritative information such as;
source address prefixes, DNS server locations, HTTP Proxy
location, default gateway address, and could be extended to
include characteristics of the service (e.g., maximum capacity
available, existence of supported QoS services, cost of using
an interface, etc). The new PvD protocols provide a way for an
endpoint stack to select transport candidates and also to assist
in configuring the protocols for the local network service. In
addition, applications could benefit from an interface to the
PvD information – in the NEAT System this type of function
is provided by the Policy Manager.

Path Layer UDP Substrate (PLUS) is a proposed encapsu-
lation header and protocol that provides bi-directional com-
munication over UDP. This is intended to convey selected
transport information to middleboxes on an Internet path,
even in the face of pervaisive application encryption. The
transport-agnostic method assists state management for pin-
holes through NAPTs, firewalls and other boxes on the net-
work path. Extensions to PLUS can provide path information
(e.g. advice on MTU or available capacity) that may help
a transport protocol and can inform selection of a suitable
transport candidate. PLUS could also evolve to support non-
data-related diagnostics, e.g. measure progress of flow, dupli-
cation/loss, relative fairness, etc.

Another proposal suggests adding options to UDP [21].
This utilises the UDP length field, in a way resembling its
use in UDP-lite, but in this case to provide a field in which
options can be attached to any datagram. UDP Options could
be utilised by mechanisms below the Datagram API to provide
a standard way to communicate control information. This
receiver demultiplexing lets the transport extract control infor-
mation not intended for the application. This would therefore
allow the stack to send probes/measurements on behalf of the
application, such as using an “echo this data” message for
RTT measurement, keep-alive probes, Path MTU probes, etc.

It is too early to tell where there is merit for the community
at large in using new service discovery methods (such as
PvD), a new encapsulation (such as Plus) or an update to UDP
(such as UDP Options). However, we do note that transition
to support such transport evolution would be greatly eased by
the presence of a higher-level Datagram API.

IP

Application

UDP Transport

IP

Application

Transport
Demux

Transport

CIB

Policy
Manager

Socket API

Datagram API

Fig. 1. Stack Evolution: Left, The traditional socket API. Right, A new
Datagram API utilising Policy and Transport-layer Demultiplexing

VI. LOOKING TO THE FUTURE

The network has become ossified and experience has shown
it has been virtually impossible to deploy transport protocols
with different IP protocol numbers. TCP development requires
modifications in operation system kernels, needing a large
effort for the developer to deploy enhancements. The time
required to have enough hosts running an enhancement to see
a benefit impedes iteration times.

Accordingly, new protocol development is happening on top
of UDP (Figure 1, left stack). This has several advantages.
First, and most critically, it enables the permissionless end-
to-end deployment of new transports: UDP has wide enough
deployment that it can be expected to work in most networks.
Secondly, a UDP demultiplexing substrate introduces minimal
bandwidth and processing overhead. In addition, there is
already at least some support in middlebox devices (NAPT,
Firewalls) that can be used as a starting point for deployment.
Finally, the UDP API is widely supported allowing user-space
stacks to directly access the network without requiring special
privileges. The latter overcomes the time and effort required to
integrate a new transport across a range of operation systems.

The history of the Stream Control Transmission Protocol
(SCTP) illustrates the benefits of using UDP as a demulti-
plexing substrate. SCTP has an assigned IP protocol number
(132), and is moderately widely implemented as a native
transport, but has seen only limited deployment because it
does not pass residential NATs/firewalls. When running over
UDP, as the WebRTC data channel [22], however, SCTP has
seen worldwide, deployment in web browsers, in part because
of ease of implementation in user-space, and in part because
it is not blocked by most firewalls/NATs.

Large developers are evolving their applications, we see
efforts from Facebook, Google, Apple and others to develop
new protocols on top of UDP. The new protocols offer a higher
level API to the applications, this API is locked away under
layers of application state. If you are not the browser vendor
with the new HTTP transport protocol you are playing catch up
to remain on a level with their networking stack. Developers
that do not have the same wide scale of resources have access
only to the socket API, this is not sufficient to continue to
evolve on the Internet.

VII. CONCLUSION

UDP is increasingly playing the role of a demultiplexing
substrate layer, dynamically binding the transport protocol to
a signalled “port” number. The UDP Sockets API needs to
evolve to be less an application programming interface, and
more a transport protocol interface. The usefulness of the
present UDP Sockets API has passed. It is time to raise the
Datagram API to support transport protocol evolution.

The application interface must migrate up the stack, to
provide a higher level of abstraction for applications, while
allowing transport flexibility to meet their needs. This provides
a substrate for new low-level transport protocol development,
while providing the transport services needed by the next
generation applications.

ACKNOWLEDGMENT

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No. 644334
(NEAT). The views expressed are solely those of the author(s).

REFERENCES

[1] J. Postel, “User datagram protocol,” IETF, RFC 768, August 1980.
[2] G. Fairhurst and T. Jones, “Features of the user datagram protocol (UDP)

and lightweight UDP (UDP-lite) transport protocols,” IETF, Internet-
Draft, October 2016.

[3] L. Eggert, G. Fairhurst, and G. Shepherd, “UDP usage guidelines,” RFC
Editor, BCP 145, March 2017.

[4] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and
secure transport,” IETF, Internet-Draft, January 2017.

[5] S. McQuistin and C. S. Perkins, “Reinterpreting the transport protocol
stack to embrace ossification,” in Proc. Workshop on Stack Evolution in
a Middlebox Internet. Zürich, Switzerland: IAB, January 2015.

[6] T. Herbert, L. Yong, and O. Zia, “Generic UDP encapsulation,” IETF,
Internet-Draft, October 2016.

[7] NEAT, “NEAT Project,” https://www.neat-project.org, 2017.
[8] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session traversal

utilities for NAT (STUN),” IETF, RFC 5389, October 2008.
[9] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal using relays around

NAT (TURN): Relay extensions to session traversal utilities for NAT
(STUN),” IETF, RFC 5766, April 2010.

[10] S. Perreault and J. Rosenberg, “Traversal using relays around nat (turn)
extensions for tcp allocations,” IETF, RFC 6062, November 2010.

[11] J. Rosenberg, “ICE: A protocol for NAT traversal for offer/answer
protocols,” IETF, RFC 5245, April 2010.

[12] D. Wing and A. Yourchenko, “Happy eyeballs: Success with dual-stack
hosts,” IETF, April 2012, RFC 6555.

[13] T. Savolainen, J. Kato, and T. Lemon, “Improved recursive dns server
selection for multi-interfaced nodes,” IETF, RFC 6731, December 2012.

[14] S. McQuistin, C. S. Perkins, and M. Fayed, “TCP Hollywood: An
unordered, time-lined, TCP for networked multimedia applications,” in
Proc. Networking Conference. Vienna, Austria: IFIP, May 2016.

[15] S. Islam and M. Welzl, “Start me up: Determining and sharing TCP’s
initial congestion window,” in Proc. IRTF ANRW. ACM, 2016.

[16] K.-J. Grinnemo, T. Jones, G. Fairhurst, D. Ros, A. Brunstrom, and
P. Hurtig, “Towards a flexible Internet transport layer architecture,” in
Proc. LANMAN. IEEE, jun 2016.

[17] NEAT, “NEAT Source Code,” https://github.com/NEAT-project, 2017.
[18] G. Papastergiou, K.-J. Grinnemo, A. Brunstrom, D. Ros, M. Tüxen,

N. Khademi, and P. Hurtig, “On the cost of using happy eyeballs for
transport protocol selection,” in Proc. IRTF ANRW. ACM, 2016.

[19] D. Anipko, “Multiple provisioning domain architecture,” IETF, RFC
7556, June 2015.

[20] B. Trammell and M. Kuehlewind, “Path layer UDP substrate specifica-
tion,” IETF, Internet-Draft, December 2016.

[21] J. Touch, “Transport options for UDP,” IETF, Work in progress, February
2017.

[22] H. Alvestrand, “Transports for WebRTC,” IETF, Work in progress,
October 2016.

