315 research outputs found

    Upper bounds for the Stanley-Wilf limit of 1324 and other layered patterns

    Get PDF
    We prove that the Stanley-Wilf limit of any layered permutation pattern of length \ell is at most 424\ell^2, and that the Stanley-Wilf limit of the pattern 1324 is at most 16. These bounds follow from a more general result showing that a permutation avoiding a pattern of a special form is a merge of two permutations, each of which avoids a smaller pattern. If the conjecture is true that the maximum Stanley-Wilf limit for patterns of length \ell is attained by a layered pattern then this implies an upper bound of 424\ell^2 for the Stanley-Wilf limit of any pattern of length \ell. We also conjecture that, for any k0k\ge 0, the set of 1324-avoiding permutations with kk inversions contains at least as many permutations of length n+1n+1 as those of length nn. We show that if this is true then the Stanley-Wilf limit for 1324 is at most eπ2/313.001954e^{\pi\sqrt{2/3}} \simeq 13.001954

    Generalized permutation patterns - a short survey

    Get PDF
    An occurrence of a classical pattern p in a permutation π is a subsequence of π whose letters are in the same relative order (of size) as those in p. In an occurrence of a generalized pattern, some letters of that subsequence may be required to be adjacent in the permutation. Subsets of permutations characterized by the avoidance—or the prescribed number of occurrences— of generalized patterns exhibit connections to an enormous variety of other combinatorial structures, some of them apparently deep. We give a short overview of the state of the art for generalized patterns

    Some open problems on permutation patterns

    Full text link
    This is a brief survey of some open problems on permutation patterns, with an emphasis on subjects not covered in the recent book by Kitaev, \emph{Patterns in Permutations and words}. I first survey recent developments on the enumeration and asymptotics of the pattern 1324, the last pattern of length 4 whose asymptotic growth is unknown, and related issues such as upper bounds for the number of avoiders of any pattern of length kk for any given kk. Other subjects treated are the M\"obius function, topological properties and other algebraic aspects of the poset of permutations, ordered by containment, and also the study of growth rates of permutation classes, which are containment closed subsets of this poset.Comment: 20 pages. Related to upcoming talk at the British Combinatorial Conference 2013. To appear in London Mathematical Society Lecture Note Serie

    On the Wilf-Stanley limit of 4231-avoiding permutations and a conjecture of Arratia

    Get PDF
    We construct a sequence of finite automata that accept subclasses of the class of 4231-avoiding permutations. We thereby show that the Wilf-Stanley limit for the class of 4231-avoiding permutations is bounded below by 9.35. This bound shows that this class has the largest such limit among all classes of permutations avoiding a single permutation of length 4 and refutes the conjecture that the Wilf-Stanley limit of a class of permutations avoiding a single permutation of length k cannot exceed (k-1)^2.Comment: Submitted to Advances in Applied Mathematic

    On consecutive pattern-avoiding permutations of length 4, 5 and beyond

    Full text link
    We review and extend what is known about the generating functions for consecutive pattern-avoiding permutations of length 4, 5 and beyond, and their asymptotic behaviour. There are respectively, seven length-4 and twenty-five length-5 consecutive-Wilf classes. D-finite differential equations are known for the reciprocal of the exponential generating functions for four of the length-4 and eight of the length-5 classes. We give the solutions of some of these ODEs. An unsolved functional equation is known for one more class of length-4, length-5 and beyond. We give the solution of this functional equation, and use it to show that the solution is not D-finite. For three further length-5 c-Wilf classes we give recurrences for two and a differential-functional equation for a third. For a fourth class we find a new algebraic solution. We give a polynomial-time algorithm to generate the coefficients of the generating functions which is faster than existing algorithms, and use this to (a) calculate the asymptotics for all classes of length 4 and length 5 to significantly greater precision than previously, and (b) use these extended series to search, unsuccessfully, for D-finite solutions for the unsolved classes, leading us to conjecture that the solutions are not D-finite. We have also searched, unsuccessfully, for differentially algebraic solutions.Comment: 23 pages, 2 figures (update of references, plus web link to enumeration data). Minor update. Typos corrected. One additional referenc

    The limit of a Stanley-Wilf sequence is not always rational, and layered patterns beat monotone patterns

    Get PDF
    We show the first known example for a pattern qq for which limnSn(q)n\lim_{n\to \infty} \sqrt[n]{S_n(q)} is not an integer. We find the exact value of the limit and show that it is irrational. Then we generalize our results to an infinite sequence of patterns. Finally, we provide further generalizations that start explaining why certain patterns are easier to avoid than others. Finally, we show that if qq is a layered pattern of length kk, then L(q)(k1)2L(q)\geq (k-1)^2 holds.Comment: 10 pages, 1 figur
    corecore