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Abstract

We show the first known example for a patteyfior which L(g) = lim,— ~ %/S,(g) is not an
integer, wheres;, (¢) denotes the number of permutations of lengtvoiding the pattern. We find
the exact value of the limit and show that it is irrational, but algebraic. Then we generalize our results
to an infinite sequence of patterns. We provide further generalizations that start explaining why certain
patterns are easier to avoid than others. Finally, we show tha  layered pattern of lengiythen
L(g) > (k — 1)2 holds.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let S, (¢) be the number of permutations of lengtfor, in what follows n-permutations)
that avoid the patterg. For a brief introduction to the area of pattern avoidance[4jeéor
a more detailed introduction, sf&. A recent spectacular result of Marcus and Tai@)s
shows that for any patteny there exists a constanyf so thats,, (¢) < ¢ holds for alln. As

pointed out by Arratidl], this is equivalent to the statement thidty) = lim, . /S, (g)
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exists. Let us call the sequengésS, (¢) a StanleyWilf sequence. It is a natural and in-
triguing question to ask what the limit(¢) of a Stanley—Wilf sequence can be, for various
patternsy.

The main reason this question has been so intriguing is that in all cases i@rieas
been known, it has been known to beiateger. Indeed, the results previously known are
listed below.

1. Whenqis of length three, theii(¢) = 4. This follows from the well-known fadtL0]
that in this cases, (¢) = (2')/(n + 1).

2. Wheng = 123- - -k, or whenq s such thas, (¢) = S, (12- - - k), thenL(g) = (k—1)2.
This follows from an asymptotic formula of Regf9].

3. Wheng = 1342, or wherg is such thatS, (¢) = S, (1342, thenL(g) = 8. Sed3] for
this result and an exact formula for the numbgr6l342.

In this paper, we show thdt(g) is notalways an integer. We achieve this by proving that
14 < L(12453 < 15. Then we compute the exact value of this limit, and see that it is not
even rational; it is the number94+/2. We compute the limit of the Stanley—Wilf sequence
for an infinite sequence of patterns, and see that as the l&rgftthese patterns grows,
L(q) will fall further and further below the largest known possible valite- 1)2. Finally,
we show that while for certain patterns, our methods provide the exact value of the limit of
the Stanley—Wilf sequence, for certain others they only providevar boundon this limit.

This starts explaining why certain patterns are easier to avoid than others. Among other
results, we will confirm a 7-year old conjecture by proving that in the sense of logarithmic
asymptotics, a layered pattegris always easier to avoid than the monotone pattern of the
same length.

2. Proving an upper bound

Let p = p1p2--- p, be a permutation. Recall that is called deft-to-right minimunof
pif p; > p; forall j < i.Inother words, a left-to-right minimum is an entry that is smaller
than everything on its left. Note thaj is always a left-to-right minimum, and so is the entry
1 of p. Also note that the left-to-right minima @falways form a decreasing sequence. For
the rest of this paper, entries that are not left-to-right minima are cadledining entries
Now we are in a position to prove our promised upper bound for the nunpera453.

Lemma 2.1. For all positive integers nwe have
5,(12453 < (9+ 4v2)" < 14.66".

Proof. Letpbe a permutation counted By (12453, and letp havek left-to-right minima.

Then we have at moiﬁ) choices for the set of these left-to-right minima, and we have
at most(’,ﬁ) choices for their positions. The string of the remaining entries has to form a
1342-avoiding permutation of length- k. Indeed, if there was a copedbof 1342 among

the entries that are not left-to-right minima, then we could complete it to a 12453 pattern
by simply prepending it by the closest left-to-right minimum that is on the le&. dthe
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number of 1342-avoiding permutations on- k elements is less thart 8 as we know
from [3]. This shows that

n

2
5,(12453 <Y <:) gk

k=1

()< (50 )

< (1+ V8% = (9+4/2)"

and the proof is complete.[]

Corollary 2.2. We have

L(12453 <9+ 4/2 < 14.66.

3. Proving a lower bound

We have seen in Corollag.2that L (12453 <9+ 4+/2 < 14.66. In order to prove that
this limit is not an integer, it suffices to show that it is larger than 14. In what follows, we are
going to work toward a good lower bound for the numhgr€l2453, and thus the number
L(12453.

Where is the waste in the proof of the upper bound in the previous section? The waste
is that there are some choices for the left-to-right minima that are incompatible with some
choices for the 1342-avoiding permutation of the remaining entries. This is a crucial concept
of the upcoming proof, so we will make it more precise.

We have mentioned in the previous section, that determining the left-to-right minima of a
permutatiorp means to determine the Sebf positions where these minima will be, and to
determine the set of entries that are the left-to-right minima. In other words, the ordered
pair (T, Z) of equal-sized subsets pf] = {1, 2, ..., n} describes the left-to-right minima
of p.

Definition 3.1. Let n be a positive integer, and let<n be a positive integer. Lék and

Z be twom-element subsets ¢f]. Finally, letSbe a permutation of the elements of the
set[n] — Z. If there exists am-permutatiorp so that its left-to-right minima are precisely
the elements oZ, they are located in positions belongingTtoand its string of remaining
entries isS, then we say that the tripl@’, Z, S) is compatible Otherwise, we say that the
triple (T, Z, S) isincompatible

Clearly, if (T, Z, S) is compatible then there is exactly one permutatipsatisfying all
criteria specified by7, Z, S).

Example 3.2.1f n = 4, andT = {1, 3}, Z = {1,2}, andS = 43, then(T, Z,S) is
compatibleas shown by the permutation 2413.
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Example 3.3.If n = 4, andT = {1, 3}, Z = {1, 3}, andS = 24, then(T, Z, S) isincom-
patible Indeed, the only permutation allowed ByandSis 3214, but for this permutation
Z = {1, 2,3}, not{, 3}.

Returning to the method by which we proved our upper bound.{d2453, we will
show that in a sufficient number of cases, our triglésZ, S) are compatible. This will
show that the upper bound is quite close to the precise valigl#453.

What is a good way to check that a particular choi® Z) of left-to-right
minima is compatible with a particular choice 87 For shortness, let us call the pro-
cedure of putting togeth&and a string T, Z) of left-to-right minimamerging One has to
check that in the permutation obtained by merging our left-to-right minima Bjth
the left-to-right minima are indeed the entriesanThat is, there are no additional left-
to-right minima, and the entries b are indeed all left-to-right minima. This is achieved
exactly when any remaining entry is larger than the closest left-to-right minimum
on its left.

In our efforts to find a good lower bound di(12453, we will only consider a special
kind of permutations. LelN be a positive integer so th&}, (1342 > 7.99" foralln > N.

(We know from[3] that such amN exists ad.(1342 = 8.)

Assume first that the strin§ of remaining entries of our permutations has length
wheresis divisible byN. Consider permutations having the following additional property.
If we cut Sinto s/N blocks of consecutive entries of lengtheach, then the entries of
any given blockB are all smaller than the entries of any block on the lefBp&nd larger
than the entries of any block on the right®fLet us call these strings block-structured
See Fig.1 for the generic diagram of a block-structured string in the (unrealistic) case
of N = 2.

If sis not divisible byN, that is, whens = Nt + r for somer € [1, N — 1], then
we call S block-structured if its last entries are its smallest entries, and they are in
decreasing order, and its first— r entries have the block-structured property in the
above sense. For instance, f§r = 3 ands = 8, the string 68]534J21 is block struc-
tured. As the last entries must be in decreasing order, we will not call their string
a block.

Let Sbe a block-structured string in which each block is a 1342-avoiding substring. It is
then clear thaSitself is 1342-avoiding as a 1342-pattern cannot start in a block and end
in another one. The definition &f implies that we have more thang®" choices for the
substring of each block. Therefore, we have at le&@%7" block-structured stringS of
lengthsthat avoid 1342. (Recall thats the remainder fmoduloN). Asr < N, thisimplies
that the number of block-structured strings of lengit always more tha% <799 =
¢-7.99, for an absolute constaat(The constant will become insignificant when we take
nth roots.)

We claim that a sufficient number of these stritg8ill be compatible with a sufficient
number of the choice@’, Z) of left-to-right minima.

First, look at the very special case wh8ns decreasing In this case, we will write
S9einstead ofS. Now our permutatiorp consists of two decreasing sequences (so it is
123-avoiding), namely the left-to-right minima asiéeC. The following proposition is very
well-known.
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Fig. 1. A block-structured string.

Proposition 3.4. Let 1<m <n. Then the number df23-avoiding npermutations having
exactly m left-to-right minima is

= 2(0)(.")

a Narayanaaumber

For a proof, segl1] or [5].

The significance of this result for us is the following. If we just wanted to méfye)
ands9€Ctogether, with no regard to the existing constraints, the total number of ways to do
that would be of course at mog}) - (). The above formula shows that rougHiyof these
mergings will actually be good, that is, they will not violate any constraints, they will lead
to compatible triplesT, Z, S). The factor% is not a significant loss from our point of view,
since lim,_ oo ¥/1/n = 1.

Now let us return to the general case of block-structured st@nlysother words, take a
123-avoidingn-permutation(7, Z, S99, and replace its strin§€ by a block-structured
string S taken on the entries that belong $8°¢. We claim that after this replacement, a
sufficient number of triplesT’, Z, S) will be compatible.

Here is the outline of the proof of that claim. Because of the definition of a block-structured
S itis true that every entry iBis at mosi positions away from the position it was $9¢¢.

(We will take the left-to-right minima into account next.) Therefore, if we meifeZz)
ands?Cctogether so that each left-to-right minimyris not only smaller than all entries on
its left, and smaller than all remaining entries located betwesserd the closest left-to-right
minimum y’ on the right ofy, but also smaller than the closest remaining entries on the
right of y’, then we will be done. Indeed, in this case replacifitf by any block-structured
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string Swill not violate any constraints since no remaining entry moves up by more\han
slots in the string of remaining entries.

For example, seN = 3 (which is unrealistic because in reality,needs to be much
larger). Then the permutation 592871643 has the desired property. Indeed, each left-to-
right minimumy of this permutation is smaller than the three remaining entries immediately
following the left-to-right minimumy’ that comes aftey. That is, 5 is smaller than 8, 7 and
6, and 2 is smaller than 6, 4, and 3. (The condition always vacuously holds for 1.) Therefore,
if we rearrange the string 987643 so that no entry moves up by more than three slots within
this string, then no constraints will be violated, that is, the obtained permutation will still
have left-to-right minima 5, 2, and 1.

Therefore, we will have a lower bound for the number of compatible triglesZ, S)
if we find a lower bound for the number of compatible tripl@s Z, $9€9 in which each
left-to-right minimum has the mentioned stronger property.

In order to find such a lower bound, take a 123-avoiding permutationhich is of
lengthn — N. Let p’ havem left-to-right minima. Denot&T’, Z’) the string of the left-
to-right minima of p’, and letS9e¢ denote the decreasing string of remaining entries of
p’. Now prependp’ with the decreasing string taken on thieelement sefn — N +
1,n— N+ 2, ...,n}, to get ann-permutation. In thisr-permutation, move each of the
original m left-to-right minima of p’ to the left byN positions. Let us call the obtained
n-permutationp”.

For example, witlh = 9, N = 3, andp’ = 456123, we first prepeng’ with the string
987, to get 987456123, then move the original two left-to-right minima’pthat is, the
entries 4 and 1, to the left by three positions, to gét= 498715623. Note that means that
the set of positions of the left-to-right minima pf’ is actually still7’.

Itis then clear that the left-to-right minima pf’ are the same as the left-to-right minima
of p’. Furthermore, because of the translation we used to create our new permytatias,
the property that iff andy’ are two left-to-right minima so that is the closest left-to-right
minimum on the right ofy, theny is smaller than th&l remaining entries immediately on
the right of y’. Indeed, thes®& remaining entries were on the right ¢f in the original
permutationp’.

Now we can use the argument that we outlined five paragraphs ago. For easy reference,
we sketch that argument again.S4€Cis replaced by any block-structured permutation of
the same size taken on the same set of elements, (resulting mAp@nutationp) then
each remaining entry will move within its block only, that isx will move at mostN
positions from its original position in the strir§of remaining entries. Thereforg,will
still be larger than the left-to-right minimum closest to it and preceding it.

This shows that ifp’ and (7', Z’) lead to a compatible triple, then so too wjlk and
(T, Z), where(T, Z) describes the left-to-right minima @f«. Propositior3.4implies that
the number of compatible tripled”, Z’, p’) is n_lN (":nN) (':n‘_l\{) As N is a constant, we
have

i 2 D) GG @
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Now restrict our attention to the particular case whenr= |n/3]. We claim that per-
mutations of this particular type are sufficiently numerous to provide the lower bound we
need. Using Stirling’s formula, a routine computation yields that in this case, we have

.\ (n 32
i {()0) =i () 10

Besides, we have more than7.99%*/3 choices for the block-structured striSdpy which
we replaces?eC Therefore, we have proved the following lower bound.

Lemma 3.5. For n sufficiently largethe number of n-permutations of length n that avoid
the pattern12453is larger than

1.88% . c.7.999/3>¢.1412",

wherec = 7.99°V.
Lemma3.5and Corollary2.2together immediately yield the following.

Theorem 3.6. We have
14.12< L(12453 < 14.66.
In particular, L(12453 = lim, .~ /S,(12453 is not an integer

4. The exact value ofL (12453

If we are a little bit more careful with our choice of in the argument of the previous
section, we can find the exact valuelafl2453. It turns out to be the upper bound proved
in Corollary2.2

Theorem 4.1. We havel (12453 = (1 + /8)2 = 9+ 4/2.

Proof. The above argument works for any<in <n — N instead ofn = |n/3], and for
any positive real number-8 ¢ < 8 instead of 7.99. The inequality generalizing LenBra
we getis

5, (12453 > ¢ — (" - N) (” - N) 8— g™, ®)
n—N

m m—1

wherec = (8 — ¢)~ V.
Taking @) for all m € [1, n — N], then summing all the obtained inequalities, we get

n—N
m-ms,azasaz <03 (U M) (0 )e- o @

n — m
m=1
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By a routine computation, we see that

n—N 1 (n—N
> — .
<m—1) n—N( m >

The last inequality and4jj together yield

NS, (12453 > — < 5 (” - N>2(8 )
(n— n /(n_N)Zlg m — & .

Finally, if n > N, then clearlyS, (12453 > S, (1342 > (8 — ¢)". Comparing this to the last
inequality, we get

N n—N
(n— N+ 1)S,(12453 >¢ )2 Z ( ) — gt N, (5)

Letus nowresortto the well-known Cauchy—Schwarz inequality stating thatis, . . . , aq
are positive real numbers, then

1
Jartazt+ag?<af+ad+ - +af. ©)

The right-hand side o8} can be viewed as the sum@f- N +1) squares, namely the squares
of the positive real numbei§;")/(8 — e)»~N—m. Therefore, setting = n — N + 1, we
can apply 6) to the sum on the right-hand side &} (which then leads us to the inequality
2

1 n=N n—N n—N—m
/ 2(n— N) 2 : /o _
—N+1(1+ -9 —N—I—l(m_O( m > 8¢ )

n—N

— N\2
< Z (n . ) (8_8)n—N—m.

m=0

Comparing this with%), we see that

8—o 2(1—N)_
51124832 ¢ ot N+1)4(+v B

Takingnth roots, then taking limits asgoes to infinity, we see that
L(12453 > (1+ /8 — ¢)?

for any positiveg, proving our claim. [J

5. Some generalizations

In this Section, we will provide some interesting generalizations of our results. We will
need the following simple recursive properties of pattern avoiding permutations.
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Proposition 5.1. Let g be a pattern of length, land letq’ be the pattern of length + 1
that is obtained from g by addinbto each entry of q and prepending it withLet p be a
permutation whose string of remaining entries is S. Then the following hold

1. If S avoids gthen p avoidg’.
2. If g itself starts withl, then p avoidg’ if and only if S avoids g

Iteratively applying part 2 of Propositidsi 1, and the method explained in the previous
sections, we get the following theorem.

Theorem 5.2. Letk >4, and letgy be the patterrl2. .- (k — 3)(k — Dk(k — 2). S0g4 =
1342,q5 = 12453,and so on. Then we have

L(gr) = (k — 4+ /82

Proof. Induction onk. Fork = 4, the result is proved if8], and fork = 5, we have just
proved it in the previous section. Assuming that the statement is trisevi@ can prove the
statement fok + 1 the very same way we proved it for= 5, using the result fok = 4,
and part 2 of Propositios.1 [

The method we used to prove Lemgidcan also be used to prove the following recursive
result.

Lemma 5.3. Let g be a pattern of length k that starts withand letq’ be the pattern of
lengthk + 1 that is obtained from g by addingto each entry of g and prepending it with
1.Let c be a constant so th&}, (¢q) < ¢” for all n. Then we have

Su(@) < A+ /)2 = A+ c+2J/0)".

This is an improvement of the previous best refd]itthat only showed,, (¢") < (4¢)".
The following generalization of Theoreml can be proved just as that Theorem is.

Theorem 5.4. Let g andg’ be as in Lemm&.3. Then we have
L(g") =1+ L(g) +2yL(g).

In a sense, this result generalizes Regev’'s rd9jithat showed thaf.(12---k) =
(k — 1)2. Our result shows that this particular growth rate, that is, {i&itg) grows by one
as the pattern grows by one, is not limited to monotone patterns.

An interesting consequence of this theorem is thqisfas above, anfl(q) < (k — 1)2,
in other wordsg is harder (or easier, for that matter) to avoid than the monotonic pattern
of the same length, then repeatedly prependjmgth 1 will not change this. That is, the
obtained new patterns will still be more difficult to avoid than the monotonic pattern of the
same length.

Are the methods presented in this paper useful at all if the pajtdags not start in the
entry 1? We will show that for most pattergsthe answer is in the affirmative, as far as a
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lowerbound is concerned. Let us say that the pattgsindecomposabliéit cannot be cut

into two parts so that all entries on the left of the cut are larger than all entries on the right
of the cut. For instance, 1423 and 3142 are indecomposable, but 3412 is not as we could
cut it after two entries. Therefore, we call 34d@€composablét is routine to verify that as

k grows, the ratio of indecomposable patterns among! gatterns of lengthk goes to 1.

Theorem 5.5. Let g be anindecomposablgattern of length kand letL = lim,_
S, (q). Letq’ be defined as in Lemnfa3. Then we have

lim /S.(¢)>1+L+2VL.

n—oo

Proof. This theorem can be proved as Lem® & and Theoremt.1 are. Indeed, ag is
indecomposable, any block-structured strwill avoid q if each block does. Now apply
part 1 of Propositiorb.1 to see that our argument will still provide the required lower
bound. O

Note that the fact that the reverse complement of an indecomposable pattern is also an
indecomposable pattern makes it possible to prove an analogous version of TBegrem
in which instead of prepending the indecomposable patigina minimal entry, we affix
a maximal entry to the end of

Our methods will not provide an upper bound for }im., +/S,(¢’) because the string
Sof remaining entries of @’-avoiding permutation does not have todpavoiding. (Only
part 1 and not part 2 of Propositidnl applies.) That condition is simply sufficient, but
not necessary, in this general case. Nevertheless, ThenBminteresting. It shows that
for almost all patterns, if we prependq by the entry 1, the limit of the corresponding
Stanley—Wilf sequence will grow at least as fast as for monotpiieq started in 1, then
this growth will be the same as for monotome

Now it is a little easier to understand why, in the case of length 4, the patterns that are the
hardest to avoid, are along with certain equivalent ones, 1423 and 1342. Indeed, removing
the starting 1 from them, we get tdecomposablpatterns 423 and 342. As these patterns
are decomposable, Theorén®d does not hold for them, so the limit of the Stanley—Wilf
sequence for the patterns 1423 or 1342 does not have to be at least-14 = 9, and in
fact it is not.

A particularly interesting application of Theorésis as follows. Recall that kayered
pattern is a pattern that consists of decreasing subsequences (the layers) so that the entries
increase among the layers. Forinstance, 3217654 is a layered pattern. In 1997, several people
(including present author) have observed, using numerical evidence compjiteflthat if
gis a layered pattern of lengkathen for smalh, the inequalityS, (12- - - k) < S, (¢) seems
to hold. We will now show that this is indeed true in the sense of logarithmic asymptotics.

Theorem 5.6. Let g be a layered pattern of length k. Then we have
L(g)>(k — 1)

Equivalently L(g) > L(12-- - k).
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In order to prove Theore®.6, we need the following powerful Lemma, due to Backelin,
West, and Xin.

Lemma 5.7(Backelin et al[2]). Letr < k, and letv be any pattern of length — r taken
onthese{r +1,r +2,...,k}. Then for all positive integers,ave have

S,(12---rv) =S, (r(r — 1) ---21v).
Now we are in position to prove Theoresb.

Proof of Theorem 5.6. Induction onk. If g has only one layer, thegis the decreasing
pattern, and the statement is obvious. Now assqrhas at least two layers, and that we
know the statement for all layered patterns of lerigthl. Asqis layered, it is of the form
r(r—1)---21v for somer, and some layered pattesnTherefore, Lemma&.7 applies, and
we haves, (¢g) = S,,(12- - - rv). If this last pattern is denoted lay’, then we obviously also
haveL(g) = L(¢*). We further denote by*~ the pattern obtained fromi* by removing
its first entry. Note thag*~ is still a layered pattern, just its first several layers may have
length 1.

Casel: Assume first that > 1. Then note thag*~ starts with its smallest entry.
Therefore, Theorerf.4 applies, and by the induction hypothesis we have

Li@)=LG") =1+ L@ )+2J/L@* ) =1+ (k— 2%+ 2k — 2)
= (k — 1),

which was to be proved.

Case2: Now assume that = 1. Thenq is a layered pattern that starts with a layer of
length 1. Therefore, instead of applying Theorgd we need to, and almost always can,
apply Theorenb.5 for the patterng*~. Indeed,q*~ is a layered pattern, and as such, is
indecomposable, except when it has only one layer, that s, itis the decreasing permutation.

Subcase 2a: First look at the case whé&n has more than one layers. That implies that
g™~ is indecomposable. Therefore, we can apply Thedsesto get

L@)=21+Lg* ) +2/L@ ) 21+ k=22 + 2(k — 2) = (k — 2.

Subcase 2b: Finally, §*~ has only one layer, then by the definition of layered patterns,
g™~ must be the decreasing pattern. As we are in the case whkerl, we simply have
g = lk(k —1)---2. Then we have

Sn(q) = Sp(k —1---21k) = S,(12---k),

where the first equality follows by taking reverse complements, and the second one is a
special case of Lemma7. Indeed, simply set = k — 1 in that lemma, and lei be the
one-element pattern.

As we have covered all possible cases, the proof is compléte.

We point out that while Case 1 could have been treated the same way as Subcase 2a,
that would have been less elucidating. Indeed, in Case 1, we progquatity, while in
Subcase 2a, we only prove mequality This lends some further support to the conjecture,
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supported by numerical evidence, that among all layered patteohdengthk, the one
for which S, (¢) is maximal for largen is ¢ = 1325476 - -. As this pattern has as many
non-singleton layers as possible (without being equivalent to the monotone pattern), for this
pattern our inductive proof will go to Subcase 2a as many times as possible.

Here is another way in which our results start explaining why certain patterns are easier
to avoid than others. We formulate our observations in the following corollary.

Corollary 5.8. Let g1 and g2 be patterns so thal(q1) <L(g2). Let ¢ be the pattern
obtained fromy; by prepending; by al. Furthermore let ¢; start with the entryl, and let
g2 be indecomposable. Then we have

L(gy) = 1+ L(q1) + 2y/L(q1) <1+ L(q2) + 2/ L(g2) < L(q)).

For instance, if we set; = 123 andy, = 213, we get the well-known statement weakly
comparing the limits of the Stanley—Wilf sequences of 1234 and 1324, first proyef in

6. Further directions

Our results raise two interesting kinds of questions. We have seen that the limit of a
Stanley—Wilf sequence is not simply not always an integer, but also not always rational. Is it
always aralgebraicnumber? If yes, can its degree be arbitrarily high? Can it be more than
two? Is it always aralgebraic integerthat is, the root of anonicpolynomial with integer
coefficients? The results so far leave that possibility open.

The second question is related to the size of the limit/&,(¢) if q is of lengthk.

The largest value that this limit is known to take(is— 1)2, attained by the monotonic
pattern. Before present paper, the smallest known value, in terisfaf this limit was
(k—1)2—1 = 8, attained by = 1342. As Theorerb.2shows, the valué — 4+ +/8)2 is

also possible. Akgoes to infinity, thelifferenceof the assumed maximuth — 1)? and this

value also goes to infinity, while their ratio goes to 1. Is it possible to find a series of patterns
gx SO that this ratio does not converge to 1? We point out that it follows from a result of P.
Valtr (published i7]) that for any patterq of lengthk, we have lim_, oo /S, (q) > e 3k2,

so the mentioned ratio cannot be more th&n

Finally, now that the Stanley—Wilf conjecture has been proved, and we know that the
limit of a Stanley—-Wilf sequence always exists, we can ask what the largest possible value
of this limit is, in terms ofk. In [1], Arratia conjectured that this limit is at mo&t — 1),
and, following the footsteps of Eéd, he offered 100 dollars for a proof or disproof of the
conjectures, (¢) < (k — 1)%*, for all n andq. Our results provide some additional support
for this conjecture as they show that there is a wide array of pattgfmswhich /L (g)
grows by one whenqis prepended by the entry 1. In fact, numerical evidence suggests that
even the following stronger version of Arratia’s conjecture could be true.

Conjecture 6.1. Let g be a pattern of length k. Thérig) < (k — 1)2, where equality holds
if and only if q is layeredor the reverse of q is layered
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