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always rational, and layered patterns beat
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Abstract

We show the first known example for a patternq for which L(q) = limn→∞ n
√

Sn(q) is not an
integer, whereSn(q) denotes the number of permutations of lengthn avoiding the patternq. We find
the exact value of the limit and show that it is irrational, but algebraic. Then we generalize our results
to an infinite sequence of patterns.We provide further generalizations that start explainingwhy certain
patterns are easier to avoid than others. Finally, we show that ifq is a layered pattern of lengthk, then
L(q)�(k − 1)2 holds.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

LetSn(q) be the number of permutations of lengthn (or, in what follows,n-permutations)
that avoid the patternq. For a brief introduction to the area of pattern avoidance, see[4]; for
a more detailed introduction, see[5]. A recent spectacular result of Marcus and Tardos[8]
shows that for any patternq, there exists a constantcq so thatSn(q) < cn

q holds for alln. As
pointed out by Arratia[1], this is equivalent to the statement thatL(q) = limn→∞ n

√
Sn(q)
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exists. Let us call the sequencen
√

Sn(q) a Stanley–Wilf sequence. It is a natural and in-
triguing question to ask what the limitL(q) of a Stanley–Wilf sequence can be, for various
patternsq.
The main reason this question has been so intriguing is that in all cases whereL(q) has

been known, it has been known to be aninteger. Indeed, the results previously known are
listed below.

1. Whenq is of length three, thenL(q) = 4. This follows from the well-known fact[10]
that in this case,Sn(q) = (2n

n

)
/(n + 1).

2. Whenq = 123· · · k, or whenq is such thatSn(q) = Sn(12· · · k), thenL(q) = (k−1)2.
This follows from an asymptotic formula of Regev[9].

3. Whenq = 1342, or whenq is such thatSn(q) = Sn(1342), thenL(q) = 8. See[3] for
this result and an exact formula for the numbersSn(1342).

In this paper, we show thatL(q) isnotalways an integer. We achieve this by proving that
14< L(12453) < 15. Then we compute the exact value of this limit, and see that it is not
even rational; it is the number 9+4

√
2.We compute the limit of the Stanley–Wilf sequence

for an infinite sequence of patterns, and see that as the lengthk of these patterns grows,
L(q) will fall further and further below the largest known possible value,(k − 1)2. Finally,
we show that while for certain patterns, our methods provide the exact value of the limit of
the Stanley–Wilf sequence, for certain others they only provide alower boundon this limit.
This starts explaining why certain patterns are easier to avoid than others. Among other
results, we will confirm a 7-year old conjecture by proving that in the sense of logarithmic
asymptotics, a layered patternq is always easier to avoid than the monotone pattern of the
same length.

2. Proving an upper bound

Letp = p1p2 · · · pn be a permutation. Recall thatpi is called aleft-to-right minimumof
p if pj > pi for all j < i. In other words, a left-to-right minimum is an entry that is smaller
than everything on its left. Note thatp1 is always a left-to-rightminimum, and so is the entry
1 of p. Also note that the left-to-right minima ofp always form a decreasing sequence. For
the rest of this paper, entries that are not left-to-right minima are calledremaining entries.
Now we are in a position to prove our promised upper bound for the numbersSn(12453).

Lemma 2.1. For all positive integers n, we have

Sn(12453) < (9+ 4
√
2)n < 14.66n.

Proof. Letpbe a permutation counted bySn(12453), and letphavek left-to-right minima.
Then we have at most

(
n
k

)
choices for the set of these left-to-right minima, and we have

at most
(
n
k

)
choices for their positions. The string of the remaining entries has to form a

1342-avoiding permutation of lengthn−k. Indeed, if there was a copyacdbof 1342 among
the entries that are not left-to-right minima, then we could complete it to a 12453 pattern
by simply prepending it by the closest left-to-right minimum that is on the left ofa. The
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number of 1342-avoiding permutations onn − k elements is less than 8n−k as we know
from [3]. This shows that

Sn(12453) <

n∑
k=1

(
n

k

)2

· 8n−k

<

n∑
k=1

((
n

k

)
· √

8
n−k

)2

�
(

n∑
k=1

(
n

k

)
· √

8
n−k

)2

< (1+ √
8)2n = (9+ 4

√
2)n

and the proof is complete.�

Corollary 2.2. We have

L(12453)�9+ 4
√
2 < 14.66.

3. Proving a lower bound

We have seen in Corollary2.2thatL(12453)�9+ 4
√
2 < 14.66. In order to prove that

this limit is not an integer, it suffices to show that it is larger than 14. In what follows, we are
going to work toward a good lower bound for the numbersSn(12453), and thus the number
L(12453).
Where is the waste in the proof of the upper bound in the previous section? The waste

is that there are some choices for the left-to-right minima that are incompatible with some
choices for the 1342-avoiding permutation of the remaining entries. This is a crucial concept
of the upcoming proof, so we will make it more precise.
We havementioned in the previous section, that determining the left-to-right minima of a

permutationpmeans to determine the setTof positions where these minima will be, and to
determine the setZ of entries that are the left-to-right minima. In other words, the ordered
pair (T , Z) of equal-sized subsets of[n] = {1,2, . . . , n} describes the left-to-right minima
of p.

Definition 3.1. Let n be a positive integer, and letm�n be a positive integer. LetT and
Z be twom-element subsets of[n]. Finally, letSbe a permutation of the elements of the
set[n] − Z. If there exists ann-permutationp so that its left-to-right minima are precisely
the elements ofZ, they are located in positions belonging toT, and its string of remaining
entries isS, then we say that the triple(T , Z, S) is compatible. Otherwise, we say that the
triple (T , Z, S) is incompatible.

Clearly, if (T , Z, S) is compatible, then there is exactly one permutationp satisfying all
criteria specified by(T , Z, S).

Example 3.2. If n = 4, andT = {1,3}, Z = {1,2}, andS = 43, then(T , Z, S) is
compatibleas shown by the permutation 2413.
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Example 3.3. If n = 4, andT = {1,3}, Z = {1,3}, andS = 24, then(T , Z, S) is incom-
patible. Indeed, the only permutation allowed byT andS is 3214, but for this permutation
Z = {1,2,3}, not{1,3}.

Returning to the method by which we proved our upper bound forL(12453), we will
show that in a sufficient number of cases, our triples(T , Z, S) are compatible. This will
show that the upper bound is quite close to the precise value ofL(12453).
What is a good way to check that a particular choice(T , Z) of left-to-right

minima is compatible with a particular choice ofS? For shortness, let us call the pro-
cedure of putting togetherSand a string(T , Z) of left-to-right minimamerging. One has to
check that in the permutation obtained by merging our left-to-right minima withS,
the left-to-right minima are indeed the entries inZ. That is, there are no additional left-
to-right minima, and the entries inZ are indeed all left-to-right minima. This is achieved
exactly when any remaining entry is larger than the closest left-to-right minimum
on its left.
In our efforts to find a good lower bound onL(12453), we will only consider a special

kind of permutations. LetN be a positive integer so thatSn(1342) > 7.99n for all n�N .
(We know from[3] that such anN exists asL(1342) = 8.)
Assume first that the stringS of remaining entries of our permutations has lengths,

wheres is divisible byN. Consider permutations having the following additional property.
If we cut S into s/N blocks of consecutive entries of lengthN each, then the entries of
any given blockB are all smaller than the entries of any block on the left ofB, and larger
than the entries of any block on the right ofB. Let us call these stringsS block-structured.
See Fig.1 for the generic diagram of a block-structured string in the (unrealistic) case
of N = 2.
If s is not divisible byN, that is, whens = Nt + r for somer ∈ [1, N − 1], then

we call S block-structured if its lastr entries are its smallest entries, and they are in
decreasing order, and its firsts − r entries have the block-structured property in the
above sense. For instance, forN = 3 ands = 8, the string 687|534|21 is block struc-
tured. As the lastr entries must be in decreasing order, we will not call their string
a block.
LetSbe a block-structured string in which each block is a 1342-avoiding substring. It is

then clear thatS itself is 1342-avoiding as a 1342-pattern cannot start in a block and end
in another one. The definition ofN implies that we have more than 7.99N choices for the
substring of each block. Therefore, we have at least 7.99s−r block-structured stringsSof
lengthsthatavoid1342. (Recall thatr is the remainderofsmoduloN).Asr < N , this implies
that the number of block-structured strings of lengths is always more than 1

7.99N
· 7.99s =

c ·7.99s , for an absolute constantc. (The constantcwill become insignificant when we take
nth roots.)
We claim that a sufficient number of these stringsSwill be compatible with a sufficient

number of the choices(T , Z) of left-to-right minima.
First, look at the very special case whenS is decreasing. In this case, we will write

Sdec instead ofS. Now our permutationp consists of two decreasing sequences (so it is
123-avoiding), namely the left-to-right minima andSdec. The following proposition is very
well-known.
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Fig. 1. A block-structured string.

Proposition 3.4. Let 1�m�n. Then the number of123-avoiding n-permutations having
exactly m left-to-right minima is

A(n, m) = 1

n

(
n

m

)(
n

m − 1

)
, (1)

aNarayananumber.

For a proof, see[11] or [5].
The significance of this result for us is the following. If we just wanted to merge(T , Z)

andSdec together, with no regard to the existing constraints, the total number of ways to do
that would be of course at most

(
n
m

) · (n
m

)
. The above formula shows that roughly1

n
of these

mergings will actually be good, that is, they will not violate any constraints, they will lead
to compatible triples(T , Z, S). The factor1

n
is not a significant loss from our point of view,

since limn→∞ n
√
1/n = 1.

Now let us return to the general case of block-structured stringsS. In other words, take a
123-avoidingn-permutation(T , Z, Sdec), and replace its stringSdec by a block-structured
stringS taken on the entries that belong toSdec. We claim that after this replacement, a
sufficient number of triples(T , Z, S) will be compatible.
Here is theoutlineof theproof of that claim.Becauseof thedefinitionof ablock-structured

S, it is true that every entry inSis at mostNpositions away from the position it was inSdec.
(We will take the left-to-right minima into account next.) Therefore, if we merge(T , Z)

andSdectogether so that each left-to-right minimumy is not only smaller than all entries on
its left, and smaller than all remaining entries located betweenyand the closest left-to-right
minimumy′ on the right ofy, but also smaller than theN closest remaining entries on the
right ofy′, then we will be done. Indeed, in this case replacingSdecby any block-structured
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stringSwill not violate any constraints since no remaining entry moves up by more thanN
slots in the string of remaining entries.
For example, setN = 3 (which is unrealistic because in reality,N needs to be much

larger). Then the permutation 592871643 has the desired property. Indeed, each left-to-
right minimumyof this permutation is smaller than the three remaining entries immediately
following the left-to-right minimumy′ that comes aftery. That is, 5 is smaller than 8, 7 and
6, and 2 is smaller than 6, 4, and 3. (The condition always vacuously holds for 1.) Therefore,
if we rearrange the string 987643 so that no entry moves up by more than three slots within
this string, then no constraints will be violated, that is, the obtained permutation will still
have left-to-right minima 5, 2, and 1.
Therefore, we will have a lower bound for the number of compatible triples(T , Z, S)

if we find a lower bound for the number of compatible triples(T , Z, Sdec) in which each
left-to-right minimum has the mentioned stronger property.
In order to find such a lower bound, take a 123-avoiding permutationp′ which is of

lengthn − N . Let p′ havem left-to-right minima. Denote(T ′, Z′) the string of the left-
to-right minima ofp′, and letSdec′ denote the decreasing string of remaining entries of
p′. Now prependp′ with the decreasing string taken on theN-element set{n − N +
1, n − N + 2, . . . , n}, to get ann-permutation. In thisn-permutation, move each of the
original m left-to-right minima ofp′ to the left byN positions. Let us call the obtained
n-permutationp′′.
For example, withn = 9,N = 3, andp′ = 456123, we first prependp′ with the string

987, to get 987456123, then move the original two left-to-right minima ofp′, that is, the
entries 4 and 1, to the left by three positions, to getp′′ = 498715623. Note that means that
the set of positions of the left-to-right minima ofp′′ is actually stillT ′.
It is then clear that the left-to-right minima ofp′′ are the same as the left-to-right minima

ofp′. Furthermore, because of the translationwe used to create our new permutation,p′′ has
the property that ifyandy′ are two left-to-right minima so thaty′ is the closest left-to-right
minimum on the right ofy, theny is smaller than theN remaining entries immediately on
the right ofy′. Indeed, theseN remaining entries were on the right ofy′ in the original
permutationp′.
Now we can use the argument that we outlined five paragraphs ago. For easy reference,

we sketch that argument again. IfSdec is replaced by any block-structured permutation of
the same size taken on the same set of elements, (resulting in then-permutationp∗) then
each remaining entryx will move within its block only, that is,x will move at mostN
positions from its original position in the stringSof remaining entries. Therefore,x will
still be larger than the left-to-right minimum closest to it and preceding it.
This shows that ifp′ and(T ′, Z′) lead to a compatible triple, then so too willp∗ and

(T , Z), where(T , Z) describes the left-to-right minima ofp∗. Proposition3.4implies that
the number of compatible triples(T ′, Z′, p′) is 1

n−N

(
n−N

m

)(
n−N
m−1

)
. As N is a constant, we

have

lim
n→∞

n

√
1

n − N

(
n − N

m

)(
n − N

m − 1

)
= lim

n→∞
n

√(
n

m

)(
n

m

)
. (2)
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Now restrict our attention to the particular case whenm = �n/3�. We claim that per-
mutations of this particular type are sufficiently numerous to provide the lower bound we
need. Using Stirling’s formula, a routine computation yields that in this case, we have

lim
n→∞

n

√(
n

m

)(
n

m

)
= lim

n→∞
n

√(
3n

22n/3

)2

�1.882.

Besides, we have more thanc · 7.992n/3 choices for the block-structured stringSby which
we replaceSdec. Therefore, we have proved the following lower bound.

Lemma 3.5. For n sufficiently large, the number of n-permutations of length n that avoid
the pattern12453is larger than

1.882n · c · 7.992n/3�c · 14.12n,

wherec = 7.99−N .

Lemma3.5and Corollary2.2together immediately yield the following.

Theorem 3.6.We have

14.12�L(12453)�14.66.

In particular, L(12453) = limn→∞ n
√

Sn(12453) is not an integer.

4. The exact value ofL(12453)

If we are a little bit more careful with our choice ofm in the argument of the previous
section, we can find the exact value ofL(12453). It turns out to be the upper bound proved
in Corollary2.2.

Theorem 4.1.We haveL(12453) = (1+ √
8)2 = 9+ 4

√
2.

Proof. The above argument works for any 1�m�n − N instead ofm = �n/3�, and for
any positive real number 8− � < 8 instead of 7.99. The inequality generalizing Lemma3.5
we get is

Sn(12453)�c · 1

n − N

(
n − N

m

)(
n − N

m − 1

)
(8− �)n−m, (3)

wherec = (8− �)−N .
Taking (3) for all m ∈ [1, n − N ], then summing all the obtained inequalities, we get

(n − N)Sn(12453)�
c

n − N

n−N∑
m=1

(
n − N

m

)(
n − N

m − 1

)
(8− �)n−m. (4)
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By a routine computation, we see that(
n − N

m − 1

)
� 1

n − N

(
n − N

m

)
.

The last inequality and (4) together yield

(n − N)Sn(12453)�
c

(n − N)2

n−N∑
m=1

(
n − N

m

)2

(8− �)n−m.

Finally, if n > N , then clearly,Sn(12453)�Sn(1342)�(8− �)n. Comparing this to the last
inequality, we get

(n − N + 1)Sn(12453)�c · (8− �)N

(n − N)2

n−N∑
m=0

(
n − N

m

)2

(8− �)n−N−m. (5)

Letusnowresort to thewell-knownCauchy–Schwarz inequality stating that ifa1, a2, . . . , ad

are positive real numbers, then

1

d
(a1 + a2 + · · · + ad)2�a21 + a22 + · · · + a2d . (6)

The right-handsideof (5) canbeviewedas thesumof(n−N+1)squares, namely thesquares
of the positive real numbers

(
n−N

m

)√
(8− �)n−N−m. Therefore, settingd = n − N + 1, we

can apply (6) to the sum on the right-hand side of (5), which then leads us to the inequality

1

n − N + 1
(1+ √

8− �)2(n−N) = 1

n − N + 1

(
n−N∑
m=0

(
n − N

m

)√
8− �

n−N−m

)2

�
n−N∑
m=0

(
n − N

m

)2

(8− �)n−N−m.

Comparing this with (5), we see that

Sn(12453)�c · (8− �)N

(n − N + 1)4
(1+ √

8− �)2(n−N).

Takingnth roots, then taking limits asn goes to infinity, we see that

L(12453)�(1+ √
8− �)2

for any positive�, proving our claim. �

5. Some generalizations

In this Section, we will provide some interesting generalizations of our results. We will
need the following simple recursive properties of pattern avoiding permutations.
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Proposition 5.1. Let q be a pattern of length k, and letq ′ be the pattern of lengthk + 1
that is obtained from q by adding1 to each entry of q and prepending it with1. Let p be a
permutation whose string of remaining entries is S. Then the following hold.

1. If S avoids q, then p avoidsq ′.
2. If q itself starts with1, then p avoidsq ′ if and only if S avoids q.

Iteratively applying part 2 of Proposition5.1, and the method explained in the previous
sections, we get the following theorem.

Theorem 5.2. Let k�4, and letqk be the pattern12· · · (k − 3)(k − 1)k(k − 2). Soq4 =
1342,q5 = 12453,and so on. Then we have

L(qk) = (k − 4+ √
8)2.

Proof. Induction onk. For k = 4, the result is proved in[3], and fork = 5, we have just
proved it in the previous section. Assuming that the statement is true fork, we can prove the
statement fork + 1 the very same way we proved it fork = 5, using the result fork = 4,
and part 2 of Proposition5.1. �

Themethodweused to prove Lemma2.1canalso beused to prove the following recursive
result.

Lemma 5.3. Let q be a pattern of length k that starts with1, and letq ′ be the pattern of
lengthk + 1 that is obtained from q by adding1 to each entry of q and prepending it with
1.Let c be a constant so thatSn(q) < cn for all n. Then we have

Sn(q
′) < (1+ √

c)2n = (1+ c + 2
√

c)n.

This is an improvement of the previous best result[6], that only showedSn(q
′) < (4c)n.

The following generalization of Theorem4.1can be proved just as that Theorem is.

Theorem 5.4. Let q andq ′ be as in Lemma5.3. Then we have

L(q ′) = 1+ L(q) + 2
√

L(q).

In a sense, this result generalizes Regev’s result[9] that showed thatL(12· · · k) =
(k −1)2. Our result shows that this particular growth rate, that is, that

√
L(q) grows by one

as the pattern grows by one, is not limited to monotone patterns.
An interesting consequence of this theorem is that ifq is as above, andL(q) < (k − 1)2,

in other words,q is harder (or easier, for that matter) to avoid than the monotonic pattern
of the same length, then repeatedly prependingq with 1 will not change this. That is, the
obtained new patterns will still be more difficult to avoid than the monotonic pattern of the
same length.
Are the methods presented in this paper useful at all if the patternq does not start in the

entry 1? We will show that for most patternsq, the answer is in the affirmative, as far as a
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lowerbound is concerned. Let us say that the patternq is indecomposableif it cannot be cut
into two parts so that all entries on the left of the cut are larger than all entries on the right
of the cut. For instance, 1423 and 3142 are indecomposable, but 3412 is not as we could
cut it after two entries. Therefore, we call 3412decomposable. It is routine to verify that as
k grows, the ratio of indecomposable patterns among allk! patterns of lengthk goes to 1.

Theorem 5.5. Let q be anindecomposablepattern of length k, and letL = limn→∞
n
√

Sn(q). Letq ′ be defined as in Lemma5.3. Then we have

lim
n→∞

n
√

Sn(q ′)�1+ L + 2
√

L.

Proof. This theorem can be proved as Lemma3.5, and Theorem4.1 are. Indeed, asq is
indecomposable, any block-structured stringSwill avoid q if each block does. Now apply
part 1 of Proposition5.1 to see that our argument will still provide the required lower
bound. �

Note that the fact that the reverse complement of an indecomposable pattern is also an
indecomposable pattern makes it possible to prove an analogous version of Theorem5.5,
in which instead of prepending the indecomposable patternq by a minimal entry, we affix
a maximal entry to the end ofq.
Our methods will not provide an upper bound for limn→∞ n

√
Sn(q ′) because the string

Sof remaining entries of aq ′-avoiding permutation does not have to beq-avoiding. (Only
part 1 and not part 2 of Proposition5.1 applies.) That condition is simply sufficient, but
not necessary, in this general case. Nevertheless, Theorem5.5 is interesting. It shows that
for almost all patternsq, if we prependq by the entry 1, the limit of the corresponding
Stanley–Wilf sequence will grow at least as fast as for monotoneq. If q started in 1, then
this growth will be the same as for monotoneq.
Now it is a little easier to understand why, in the case of length 4, the patterns that are the

hardest to avoid, are along with certain equivalent ones, 1423 and 1342. Indeed, removing
the starting 1 from them, we get thedecomposablepatterns 423 and 342. As these patterns
are decomposable, Theorem5.5 does not hold for them, so the limit of the Stanley–Wilf
sequence for the patterns 1423 or 1342 does not have to be at least 1+ 4+ 4 = 9, and in
fact it is not.
A particularly interesting application of Theorem5.4is as follows. Recall that alayered

pattern is a pattern that consists of decreasing subsequences (the layers) so that the entries
increaseamong the layers. For instance, 3217654 is a layeredpattern. In 1997, several people
(including present author) have observed, using numerical evidence computed in[12], that if
q is a layered pattern of lengthk, then for smalln, the inequalitySn(12· · · k)�Sn(q) seems
to hold. We will now show that this is indeed true in the sense of logarithmic asymptotics.

Theorem 5.6. Let q be a layered pattern of length k. Then we have

L(q)�(k − 1)2.

Equivalently, L(q)�L(12· · · k).
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In order to prove Theorem5.6, we need the following powerful Lemma, due to Backelin,
West, and Xin.

Lemma 5.7(Backelin et al.[2] ). Let r < k, and letv be any pattern of lengthk − r taken
on the set{r + 1, r + 2, . . . , k}. Then for all positive integers n, we have

Sn(12· · · rv) = Sn(r(r − 1) · · ·21v).

Now we are in position to prove Theorem5.6.

Proof of Theorem 5.6. Induction onk. If q has only one layer, thenq is the decreasing
pattern, and the statement is obvious. Now assumeq has at least two layers, and that we
know the statement for all layered patterns of lengthk − 1. Asq is layered, it is of the form
r(r −1) · · ·21v for somer, and some layered patternv. Therefore, Lemma5.7applies, and
we haveSn(q) = Sn(12· · · rv). If this last pattern is denoted byq∗, then we obviously also
haveL(q) = L(q∗). We further denote byq∗− the pattern obtained fromq∗ by removing
its first entry. Note thatq∗− is still a layered pattern, just its first several layers may have
length 1.

Case1: Assume first thatr > 1. Then note thatq∗− starts with its smallest entry.
Therefore, Theorem5.4applies, and by the induction hypothesis we have

L(q) = L(q∗) = 1+ L(q∗−) + 2
√

L(q∗−)�1+ (k − 2)2 + 2(k − 2)

= (k − 1)2,

which was to be proved.
Case2: Now assume thatr = 1. Thenq is a layered pattern that starts with a layer of

length 1. Therefore, instead of applying Theorem5.4, we need to, and almost always can,
apply Theorem5.5 for the patternq∗−. Indeed,q∗− is a layered pattern, and as such, is
indecomposable, except when it has only one layer, that is, it is the decreasing permutation.
Subcase 2a: First look at the case whenq∗− has more than one layers. That implies that

q∗− is indecomposable. Therefore, we can apply Theorem5.5to get

L(q)�1+ L(q∗−) + 2
√

L(q∗−)�1+ (k − 2)2 + 2(k − 2) = (k − 1)2.

Subcase 2b: Finally, ifq∗− has only one layer, then by the definition of layered patterns,
q∗− must be the decreasing pattern. As we are in the case whenr = 1, we simply have
q = 1k(k − 1) · · ·2. Then we have

Sn(q) = Sn(k − 1 · · ·21k) = Sn(12· · · k),

where the first equality follows by taking reverse complements, and the second one is a
special case of Lemma5.7. Indeed, simply setr = k − 1 in that lemma, and letv be the
one-element pattern.
As we have covered all possible cases, the proof is complete.�

We point out that while Case 1 could have been treated the same way as Subcase 2a,
that would have been less elucidating. Indeed, in Case 1, we prove anequality, while in
Subcase 2a, we only prove aninequality. This lends some further support to the conjecture,
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supported by numerical evidence, that among all layered patternsq of lengthk, the one
for which Sn(q) is maximal for largen is q = 1325476· · ·. As this pattern has as many
non-singleton layers as possible (without being equivalent to themonotone pattern), for this
pattern our inductive proof will go to Subcase 2a as many times as possible.
Here is another way in which our results start explaining why certain patterns are easier

to avoid than others. We formulate our observations in the following corollary.

Corollary 5.8. Let q1 and q2 be patterns so thatL(q1)�L(q2). Let q ′
i be the pattern

obtained fromqi by prependingqi by a1.Furthermore, let q1 start with the entry1,and let
q2 be indecomposable. Then we have

L(q ′
1) = 1+ L(q1) + 2

√
L(q1)�1+ L(q2) + 2

√
L(q2)�L(q ′

2).

For instance, if we setq1 = 123 andq2 = 213, we get the well-known statement weakly
comparing the limits of the Stanley–Wilf sequences of 1234 and 1324, first proved in[6].

6. Further directions

Our results raise two interesting kinds of questions. We have seen that the limit of a
Stanley–Wilf sequence is not simply not always an integer, but also not always rational. Is it
always analgebraicnumber? If yes, can its degree be arbitrarily high? Can it be more than
two? Is it always analgebraic integer, that is, the root of amonicpolynomial with integer
coefficients? The results so far leave that possibility open.
The second question is related to the size of the limit ofn

√
Sn(q) if q is of lengthk.

The largest value that this limit is known to take is(k − 1)2, attained by the monotonic
pattern. Before present paper, the smallest known value, in terms ofk, for this limit was
(k −1)2−1 = 8, attained byq = 1342. As Theorem5.2shows, the value(k −4+√

8)2 is
also possible. Askgoes to infinity, thedifferenceof the assumedmaximum(k−1)2 and this
value also goes to infinity, while their ratio goes to 1. Is it possible to find a series of patterns
qk so that this ratio does not converge to 1? We point out that it follows from a result of P.
Valtr (published in[7]) that for any patternqof lengthk, we have limn→∞ n

√
Sn(q)�e−3k2,

so the mentioned ratio cannot be more thene3.
Finally, now that the Stanley–Wilf conjecture has been proved, and we know that the

limit of a Stanley–Wilf sequence always exists, we can ask what the largest possible value
of this limit is, in terms ofk. In [1], Arratia conjectured that this limit is at most(k − 1)2,
and, following the footsteps of Erdős, he offered 100 dollars for a proof or disproof of the
conjectureSn(q)�(k − 1)2n, for all n andq. Our results provide some additional support
for this conjecture as they show that there is a wide array of patternsq for which

√
L(q)

grows by one whenq is prepended by the entry 1. In fact, numerical evidence suggests that
even the following stronger version of Arratia’s conjecture could be true.

Conjecture 6.1. Let q be a pattern of length k. ThenL(q)�(k −1)2,where equality holds
if and only if q is layered, or the reverse of q is layered.
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