598 research outputs found

    Robust classification via MOM minimization

    Full text link
    We present an extension of Vapnik's classical empirical risk minimizer (ERM) where the empirical risk is replaced by a median-of-means (MOM) estimator, the new estimators are called MOM minimizers. While ERM is sensitive to corruption of the dataset for many classical loss functions used in classification, we show that MOM minimizers behave well in theory, in the sense that it achieves Vapnik's (slow) rates of convergence under weak assumptions: data are only required to have a finite second moment and some outliers may also have corrupted the dataset. We propose an algorithm inspired by MOM minimizers. These algorithms can be analyzed using arguments quite similar to those used for Stochastic Block Gradient descent. As a proof of concept, we show how to modify a proof of consistency for a descent algorithm to prove consistency of its MOM version. As MOM algorithms perform a smart subsampling, our procedure can also help to reduce substantially time computations and memory ressources when applied to non linear algorithms. These empirical performances are illustrated on both simulated and real datasets

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Sparse and stable Markowitz portfolios

    Full text link
    We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e. portfolios with only few active positions), and allows to account for transaction costs. Our approach recovers as special cases the no-short-positions portfolios, but does allow for short positions in limited number. We implement this methodology on two benchmark data sets constructed by Fama and French. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naive evenly-weighted portfolio which constitutes, as shown in recent literature, a very tough benchmark.Comment: Better emphasis of main result, new abstract, new examples and figures. New appendix with full details of algorithm. 17 pages, 6 figure

    Musings on Deep Learning: Properties of SGD

    Get PDF
    [previously titled "Theory of Deep Learning III: Generalization Properties of SGD"] In Theory III we characterize with a mix of theory and experiments the generalization properties of Stochastic Gradient Descent in overparametrized deep convolutional networks. We show that Stochastic Gradient Descent (SGD) selects with high probability solutions that 1) have zero (or small) empirical error, 2) are degenerate as shown in Theory II and 3) have maximum generalization.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216. H.M. is supported in part by ARO Grant W911NF-15-1- 0385
    • …
    corecore