We consider the problem of portfolio selection within the classical Markowitz
mean-variance framework, reformulated as a constrained least-squares regression
problem. We propose to add to the objective function a penalty proportional to
the sum of the absolute values of the portfolio weights. This penalty
regularizes (stabilizes) the optimization problem, encourages sparse portfolios
(i.e. portfolios with only few active positions), and allows to account for
transaction costs. Our approach recovers as special cases the
no-short-positions portfolios, but does allow for short positions in limited
number. We implement this methodology on two benchmark data sets constructed by
Fama and French. Using only a modest amount of training data, we construct
portfolios whose out-of-sample performance, as measured by Sharpe ratio, is
consistently and significantly better than that of the naive evenly-weighted
portfolio which constitutes, as shown in recent literature, a very tough
benchmark.Comment: Better emphasis of main result, new abstract, new examples and
figures. New appendix with full details of algorithm. 17 pages, 6 figure