470 research outputs found

    On Sojourn Times in the Finite Capacity M/M/1M/M/1 Queue with Processor Sharing

    Full text link
    We consider a processor shared M/M/1M/M/1 queue that can accommodate at most a finite number KK of customers. We give an exact expression for the sojourn time distribution in the finite capacity model, in terms of a Laplace transform. We then give the tail behavior, for the limit KK\to\infty, by locating the dominant singularity of the Laplace transform.Comment: 10 page

    Decomposing the queue length distribution of processor-sharing models into queue lengths of permanent customer queues

    Get PDF
    We obtain a decomposition result for the steady state queue length distribution in egalitarian processor-sharing (PS) models. In particular, for an egalitarian PS queue with KK customer classes, we show that the marginal queue length distribution for class kk factorizes over the number of other customer types. The factorizing coefficients equal the queue length probabilities of a PS queue for type kk in isolation, in which the customers of the other types reside \textit{ permanently} in the system. Similarly, the (conditional) mean sojourn time for class kk can be obtained by conditioning on the number of permanent customers of the other types. The decomposition result implies linear relations between the marginal queue length probabilities, which also hold for other PS models such as the egalitarian processor-sharing models with state-dependent system capacity that only depends on the total number of customers in the system. Based on the exact decomposition result for egalitarian PS queues, we propose a similar decomposition for discriminatory processor-sharing (DPS) models, and numerically show that the approximation is accurate for moderate differences in service weights. \u

    On Spectral Properties of Finite Population Processor Shared Queues

    Full text link
    We consider sojourn or response times in processor-shared queues that have a finite population of potential users. Computing the response time of a tagged customer involves solving a finite system of linear ODEs. Writing the system in matrix form, we study the eigenvectors and eigenvalues in the limit as the size of the matrix becomes large. This corresponds to finite population models where the total population is N1N\gg 1. Using asymptotic methods we reduce the eigenvalue problem to that of a standard differential equation, such as the Hermite equation. The dominant eigenvalue leads to the tail of a customer's sojourn time distribution.Comment: 28 pages, 7 figures and 5 table

    Randomized Assignment of Jobs to Servers in Heterogeneous Clusters of Shared Servers for Low Delay

    Get PDF
    We consider the job assignment problem in a multi-server system consisting of NN parallel processor sharing servers, categorized into MM (N\ll N) different types according to their processing capacity or speed. Jobs of random sizes arrive at the system according to a Poisson process with rate NλN \lambda. Upon each arrival, a small number of servers from each type is sampled uniformly at random. The job is then assigned to one of the sampled servers based on a selection rule. We propose two schemes, each corresponding to a specific selection rule that aims at reducing the mean sojourn time of jobs in the system. We first show that both methods achieve the maximal stability region. We then analyze the system operating under the proposed schemes as NN \to \infty which corresponds to the mean field. Our results show that asymptotic independence among servers holds even when MM is finite and exchangeability holds only within servers of the same type. We further establish the existence and uniqueness of stationary solution of the mean field and show that the tail distribution of server occupancy decays doubly exponentially for each server type. When the estimates of arrival rates are not available, the proposed schemes offer simpler alternatives to achieving lower mean sojourn time of jobs, as shown by our numerical studies

    On the Sojourn Time Distribution in a Finite Population Markovian Processor Sharing Queue

    Full text link
    We consider a finite population processor-sharing (PS) queue, with Markovian arrivals and an exponential server. Such a queue can model an interactive computer system consisting of a bank of terminals in series with a central processing unit (CPU). For systems with a large population NN and a commensurately rapid service rate, or infrequent arrivals, we obtain various asymptotic results. We analyze the conditional sojourn time distribution of a tagged customer, conditioned on the number nn of others in the system at the tagged customer's arrival instant, and also the unconditional distribution. The asymptotics are obtained by a combination of singular perturbation methods and spectral methods. We consider several space/time scales and parameter ranges, which lead to different asymptotic behaviors. We also identify precisely when the finite population model can be approximated by the standard infinite population M/M/1M/M/1-PS queue.Comment: 60 pages and 3 figure
    corecore