4 research outputs found

    On the size of homogeneous and of depth four formulas with low individual degree

    Get PDF
    International audienceLet r ≥ 1 be an integer. Let us call a polynomial f (x_1,...,x_N) ∈ F[x] as a multi-r-ic polynomial if the degree of f with respect to any variable is at most r (this generalizes the notion of multilinear polynomials). We investigate arithmetic circuits in which the output is syntactically forced to be a multi-r-ic polynomial and refer to these as multi-r-ic circuits. We prove lower bounds for several subclasses of such circuits. Specifically, first define the formal degree of a node α with respect to a variable x_i inductively as follows. For a leaf α it is 1 if α is labelled with x_i and zero otherwise; for an internal node α labelled with × (respectively +) it is the sum of (respectively the maximum of) the formal degrees of the children with respect to x_i. We call an arithmetic circuit as a multi-r-ic circuit if the formal degree of the output node with respect to any variable is at most r. We prove lower bounds for various subclasses of multi-r-ic circuits

    Functional lower bounds for arithmetic circuits and connections to boolean circuit complexity

    Get PDF
    We say that a circuit CC over a field FF functionally computes an nn-variate polynomial PP if for every x{0,1}nx \in \{0,1\}^n we have that C(x)=P(x)C(x) = P(x). This is in contrast to syntactically computing PP, when CPC \equiv P as formal polynomials. In this paper, we study the question of proving lower bounds for homogeneous depth-33 and depth-44 arithmetic circuits for functional computation. We prove the following results : 1. Exponential lower bounds homogeneous depth-33 arithmetic circuits for a polynomial in VNPVNP. 2. Exponential lower bounds for homogeneous depth-44 arithmetic circuits with bounded individual degree for a polynomial in VNPVNP. Our main motivation for this line of research comes from our observation that strong enough functional lower bounds for even very special depth-44 arithmetic circuits for the Permanent imply a separation between #P{\#}P and ACCACC. Thus, improving the second result to get rid of the bounded individual degree condition could lead to substantial progress in boolean circuit complexity. Besides, it is known from a recent result of Kumar and Saptharishi [KS15] that over constant sized finite fields, strong enough average case functional lower bounds for homogeneous depth-44 circuits imply superpolynomial lower bounds for homogeneous depth-55 circuits. Our proofs are based on a family of new complexity measures called shifted evaluation dimension, and might be of independent interest

    On the Size of Homogeneous and of Depth-Four Formulas with Low Individual Degree

    No full text
    International audienceLet r ≥ 1 be an integer. Let us call a polynomial f (x 1 , x 2 ,. .. , x N) ∈ F[x] a multi-r-ic polynomial if the degree of f with respect to any variable is at most r. (This generalizes the notion of multilinear polynomials.) We investigate the arithmetic circuits in which the output is syntactically forced to be a multi-r-ic polynomial and refer to these as multi-r-ic circuits. We prove lower bounds for several subclasses of such circuits, including the following. 1. An N Ω(log N) lower bound against homogeneous multi-r-ic formulas (for an explicit multi-r-ic polynomial on N variables). 2. An (n/r 1.1) Ω √ d/r lower bound against depth-four multi-r-ic circuits computing the polynomial IMM n,d corresponding to the product of d matrices of size n × n each. √ N) lower bound against depth-four multi-r-ic circuits computing an explicit multi-r-ic polynomial on N variables

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore