9 research outputs found

    Distributive Lattices have the Intersection Property

    Get PDF
    Distributive lattices form an important, well-behaved class of lattices. They are instances of two larger classes of lattices: congruence-uniform and semidistributive lattices. Congruence-uniform lattices allow for a remarkable second order of their elements: the core label order; semidistributive lattices naturally possess an associated flag simplicial complex: the canonical join complex. In this article we present a characterization of finite distributive lattices in terms of the core label order and the canonical join complex, and we show that the core label order of a finite distributive lattice is always a meet-semilattice.Comment: 9 pages, 3 figures. Final version. Comments are very welcom

    Meet-distributive lattices have the intersection property

    Get PDF
    summary:This paper is an erratum of H. Mühle: Distributive lattices have the intersection property, Math. Bohem. (2021). Meet-distributive lattices form an intriguing class of lattices, because they are precisely the lattices obtainable from a closure operator with the so-called anti-exchange property. Moreover, meet-distributive lattices are join semidistributive. Therefore, they admit two natural secondary structures: the core label order is an alternative order on the lattice elements and the canonical join complex is the flag simplicial complex on the canonical join representations. In this article we present a characterization of finite meet-distributive lattices in terms of the core label order and the canonical join complex, and we show that the core label order of a finite meet-distributive lattice is always a meet-semilattice

    Meet-distributive lattices have the intersection property

    Get PDF
    This paper is an erratum of H. Mühle: Distributive lattices have the intersection property, Math. Bohem. (2021). Meet-distributive lattices form an intriguing class of lattices, because they are precisely the lattices obtainable from a closure operator with the so-called anti-exchange property. Moreover, meet-distributive lattices are join semidistributive. Therefore, they admit two natural secondary structures: the core label order is an alternative order on the lattice elements and the canonical join complex is the flag simplicial complex on the canonical join representations. In this article we present a characterization of finite meet-distributive lattices in terms of the core label order and the canonical join complex, and we show that the core label order of a finite meet-distributive lattice is always a meet-semilattice

    Symmetric Decompositions and the Strong Sperner Property for Noncrossing Partition Lattices

    Full text link
    We prove that the noncrossing partition lattices associated with the complex reflection groups G(d,d,n)G(d,d,n) for d,n≥2d,n\geq 2 admit symmetric decompositions into Boolean subposets. As a result, these lattices have the strong Sperner property and their rank-generating polynomials are symmetric, unimodal, and γ\gamma-nonnegative. We use computer computations to complete the proof that every noncrossing partition lattice associated with a well-generated complex reflection group is strongly Sperner, thus answering affirmatively a question raised by D. Armstrong.Comment: 30 pages, 5 figures, 1 table. Final version. The results of the initial version were extended to symmetric Boolean decompositions of noncrossing partition lattice

    A combinatorial approach to scattering diagrams

    Get PDF
    Scattering diagrams arose in the context of mirror symmetry, but a special class of scattering diagrams (the cluster scattering diagrams) were recently developed to prove key structural results on cluster algebras. We use the connection to cluster algebras to calculate the function attached to the limiting wall of a rank-2 cluster scattering diagram of affine type. In the skew-symmetric rank-2 affine case, this recovers a formula due to Reineke. In the same case, we show that the generating function for signed Narayana numbers appears in a role analogous to a cluster variable. In acyclic finite type, we construct cluster scattering diagrams of acyclic finite type from Cambrian fans and sortable elements, with a simple direct proof.Comment: This is the second half of arXiv:1712.06968, which was originally titled "Scattering diagrams and scattering fans". The contents of this paper will be removed from arXiv:1712.06968, which will be re-titled "Scattering fans." Version 2: Minor expository changes. (We thank some anonymous referees for helpful comments.
    corecore