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A combinatorial approach to scattering
diagrams

Nathan Reading

Abstract Scattering diagrams arose in the context of mirror symmetry, but a special class
of scattering diagrams (the cluster scattering diagrams) were recently developed to prove key
structural results on cluster algebras. We use the connection to cluster algebras to calculate the
function attached to the limiting wall of a rank-2 cluster scattering diagram of affine type. In
the skew-symmetric rank-2 affine case, this recovers a formula due to Reineke. In the same case,
we show that the generating function for signed Narayana numbers appears in a role analogous
to a cluster variable. In acyclic finite type, we construct cluster scattering diagrams of acyclic
finite type from Cambrian fans and sortable elements, with a simple direct proof.

1. Introduction
In this paper, we demonstrate cluster-algebraic and Coxeter/root-theoretic ap-
proaches to the construction of cluster scattering diagrams, and prove results that
relate cluster scattering diagrams to classical objects in algebraic combinatorics. A
crucial ingredient is the connection made in [9] between scattering diagrams and
cluster algebras. We begin by outlining an approach to scattering diagrams from
the direction of Coxeter groups/root systems. A standard approach can be found
in [9, 12], while [25] serves as a bridge between the two approaches.

Among the defining data for either a cluster algebra or a scattering diagram is
a skew-symmetrizable integer matrix B called an exchange matrix. In Section 3, we
consider the special case where the rank of B is 2. Results of [9] and easy, known
formulas for g-vectors in rank 2 reveal the entire cluster scattering diagram in the
rank-2 affine case except for the function attached to the “limiting” wall. We compute
this function in Theorem 3.4. The skew-symmetric case of Theorem 3.4 was established
using representation theory by Reineke [32, Section 6]. The non-skew-symmetric case
of Theorem 3.4 may be new.

Our proof of Theorem 3.4 expresses the function attached to the limiting wall as a
limit of ratios of (powers of) adjacent F -polynomials, using the key observation that
cluster variables can be obtained as path-ordered products. We also calculate, in the
skew-symmetric affine case, a path-ordered product related to this key observation.
Specifically, the formula for a cluster variable in terms of a path-ordered product takes
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as input the g-vector of the cluster variable. We compute the analogous path-ordered
product for the “limiting” g-vector, which is not the g-vector of a cluster variable, and
find a surprising appearance (Theorem 3.10) of the classical Narayana numbers. The
proof of Theorem 3.10 shows that this path-ordered product is the limit of ratios of
adjacent cluster variables and exploits a symmetry of the cluster algebra to establish
a functional equation for the limit. We conclude our discussion of rank 2 with some
examples of the computation of theta functions.

In Section 4, we construct cluster scattering diagrams in the acyclic finite-type case
using Cambrian fans [26]. See Theorem 4.3. As explained in Remark 4.8, the result
can be verified by concatenating two results, one that connects cluster scattering
diagrams to g-vector fans and one that connects Cambrian fans to g-vector fans, but
here we verify it directly using the combinatorics of sortable elements. We also show,
in Corollary 4.10, how to use shards [23] to make a cluster scattering diagram with
exactly one wall in each reflecting hyperplane. For a representation-theoretic approach
in the skew-symmetric case, see [9, Example 10.3].

As noted above, cluster scattering diagrams of rank 2 and cluster scattering di-
agrams of acyclic finite type have been constructed previously in the special case
where B is skew-symmetric. However, even in the skew-symmetric case, our methods
of proof are new (or in the case of the Cambrian constructions, have not previously
been applied to scattering diagrams). We view the construction of cluster scattering
diagrams as a combinatorial problem about root systems. Our aim has been to solve
the problem using only the combinatorics of root systems and Coxeter groups and
the most basic cluster algebra recursions.

In the cluster algebras literature, there are two different conventions on how to
“extend” B to add “coefficients” to the cluster algebra: Either by adjoining extra
rows to make a “tall” matrix or adjoining extra columns to make a “wide” matrix.
The difference amounts to replacing B by its transpose BT . The scattering diagram
constructions in [9] fit into the wide-matrix convention, while one of the foundational
cluster algebras papers [8] uses tall matrices. An exposition of scattering diagrams in
the wide-matrix convention, taking substantially the same point of view as the present
paper, is available in [25]. Here, we rework the definition of scattering diagrams in the
tall-matrix convention, at the same time further specializing to principal coefficients.
This allows us to relate scattering diagram results directly to cluster algebra results
and constructions from [8], and also serves as a fairly self-contained account of scat-
tering diagrams in the tall-matrix setting. Because both conventions are prevalent and
useful, our terminology and notation consistently identifies the tall-matrix scattering
diagrams as “transposed” scattering diagrams. (Replacing B by −BT corresponds to
passing to the Langlands dual in the sense of [7, Section 1.2] or [9, Appendix A]. The
difference in sign between BT and −BT is not very consequential (see Proposition 2.4)
so in essence we are applying the constructions of [9] to the Langlands dual seed.)

2. Transposed cluster scattering diagrams with principal
coefficients

In this section, we begin with an exchange matrix and construct a cluster scattering
diagram with principal coefficients. We introduce a global transpose in order to make
a cluster monomial ϑm0 have g-vector m0, in the tall-extended-exchange-matrix sense
of [8] (as discussed in the Introduction). A useful side effect of the transpose is that
in acyclic finite type the scattering fan for an exchange matrix coincides with the
Cambrian fan. The connection to the Cambrian fan will be made in Section 4. We
also use root and weight lattices as part of our initial data. Some motivation for
this choice is provided by a theorem of [3, 9], quoted below as Theorem 2.3, and by
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the Cambrian fan construction in acyclic finite type. Except for the transpose and
the language of root and weight lattices, our implementation of principal coefficients
follows [9, Appendix B].

2.1. Exchange matrices, root systems and Coxeter groups. We start with
an exchange matrix B = [bij ], a square integer matrix indexed by {1, . . . , n} that is
skew-symmetrizable, meaning that there exist real numbers δi such that δibij = −δjbji
for all i, j ∈ {1, . . . , n}. We choose the δi so that δ−1

i is an integer for each i and
gcd(δ−1

i : i ∈ {1, . . . , n}) = 1. We can do this because B is an integer matrix. We
follow the usual convention and call n the rank of B. This conflicts with the usual
definition of rank, but not badly: The constructions considered here require that B
be extended, by adjoining rows or columns as discussed above, to obtain a matrix of
rank n in the usual sense.

Let A be the Cartan matrix associated to B. That is, A = [aij ] where aii = 2
for i = 1, . . . , n and aij = −|bij | for all distinct i, j ∈ {1, . . . , n}. In particular, A is
symmetrizable because δiaij = δjaji for all i, j ∈ {1, . . . , n}.

Choose a real vector space V with a distinguished basis α1, . . . , αn called the simple
roots. The lattice Q = SpanZ(α1, . . . , αn) is called the root lattice. Define the simple
co-roots to be α∨i = δ−1

i αi, so that α∨1 , . . . , α∨n is another basis for V . The lattice
Q∨ = SpanZ(α∨1 , . . . , α∨n) is the co-root lattice. Since the δi were chosen so that each
δ−1
i is an integer, Q∨ is a sublattice of Q of finite index.
Given a primitive vector β in Q (an element β ∈ Q not equal to kβ′ for k > 1 and

β′ ∈ Q), write β∨ for the primitive vector in Q∨ that is a positive scaling of β. Given
primitive β∨ ∈ Q∨, write β for the corresponding primitive vector in Q.

Let K : V × V → R be the bilinear form defined, in the basis of simple roots on
the right and simple co-roots on the left, by K(α∨i , αj) = aij . This restricts to an
integer-valued form K : Q∨ ×Q→ Z. The form is symmetric because

K(αi, αj) = δiK(α∨i , αj) = δiaij = δjaji = δjK(α∨j , αi) = K(αj , αi).

Let ω : V ×V → R be the bilinear form defined by ω(α∨i , αj) = bij . This takes integer
values on Q∨ ×Q and is skew-symmetric by a similar calculation.

Let V ∗ be the dual vector space to V and let 〈 · , · 〉 : V ∗ × V → R be the usual
pairing. Define the fundamental weights to be the basis ρ1, . . . , ρn for V ∗ that is
dual to α∨1 , . . . , α∨n , in the sense that [〈ρi, α∨j 〉] is the identity matrix. (The funda-
mental weights are dual to the simple co-roots, not the simple roots.) The lattice
P = SpanZ(ρ1, . . . , ρn) is called the weight lattice. Define the fundamental co-weights
to be the basis ρ∨1 , . . . , ρ∨n for V ∗ that is dual to α1, . . . , αn. We have ρi = δiρ

∨
i for all

i. The lattice P∨ = SpanZ(ρ∨1 , . . . , ρ∨n) is the co-weight lattice. Since each δ−1
i is an

integer, P is a superlattice of P∨ of finite index.
The dominant chamber in V ∗ is the full-dimensional simplicial cone

(1) D =
n⋂
i=1
{p ∈ V ∗ : 〈p, αi〉 > 0}.

Equivalently, D is the nonnegative real span of the fundamental weights or of the
fundamental co-weights.

For each i = 1, . . . , n, define si to be the reflection on V given by si(αj) = αj−aijαi.
The set S of simple reflections si generates a Coxeter groupW . (More precisely, (W,S)
is a Coxeter system.) The action of si on V defines an action on V ∗ in the usual way.
Namely, si sends λ ∈ V ∗ to the unique vector siλ ∈ V ∗ such that 〈siλ, siβ〉 = 〈λ, β〉
for all β ∈ V .

The real roots Φre associated to A are the vectors of the form wαi for w ∈W and
i = 1, . . . , n. When Φre is infinite, there are also imaginary roots Φim associated to
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Figure 1. Finite crystallographic root systems with n = 2

A, which we need not define here. The root system associated to A is the disjoint
union Φ = Φre ∪ Φim. (Root systems as we have defined them are sometimes called
crystallographic; there is a more general notion that does not concern us here.) The
root system Φ is also a disjoint union Φ = Φ+ ∪ Φ− such that each β ∈ Φ+ is a
nonnegative linear combination of simple roots and each β ∈ Φ− is a nonpositive
linear combination of simple roots. The roots in Φ+ are called the positive roots. We
write Q+ for the subset of Q consisting of nonzero vectors obtained as nonnegative
integer combinations of simple roots.

The real co-roots are the vectors of the form wα∨i for w ∈W and i = 1, . . . , n. The
vector β∨ is a real co-root if and only if its scaling β is a real root.

Figure 1 shows the finite (crystallographic) root systems for n = 2, with their
Cartan matrices and types. The pictures in the middle column are drawn so that
the form K agrees with the usual Euclidean metric on the plane of the page. The
column on the right shows the positive roots and co-roots in a less conventional way:
The simple co-roots point right and up (and have the same length in the sense of the
page). Co-roots are shown as red dots, while roots are shown as arrows.

Remark 2.1. We have placed roots and co-roots in the same vector space and placed
weights and co-weights in the dual space. It is common (for example in the theory
of Kac–Moody Lie algebras as in [10]) to place roots and weights in the same vector
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space, place co-roots and co-weights in the dual space, and let the natural pairing
play the role that we have given to K. The approach here agrees with our approach
in earlier papers, including [27, 29, 30, 28, 31] and eliminates the need to enlarge
the vector spaces. Most importantly, the present approach lines up perfectly with the
definition of scattering diagrams in [9].

2.2. Principal-coefficients transposed scattering diagrams in root no-
tation. Table 1 describes the initial data for a transposed scattering diagram with
principal coefficients. The only input is an exchange matrix B = [bij ], from which we
extract a Cartan matrix and make the definitions of Section 2.1.

Table 1: Initial data for a transposed scattering diagram with prin-
cipal coefficients

Notation Description/requirements

Q+

{∑
i=1,...,n aiαi : ai ∈ Z, ai > 0,

∑
i=1,...,n ai > 0

}
positive part of root lattice

x1, . . . , xn
y1, . . . , yn

indeterminates

xλyβ
xa1

1 · · ·xann yc1
1 · · · ycnn for

(λ, β) = (
∑n
i=1 aiρi,

∑n
i=1 ciαi) ∈ P ⊕Q

ŷ1, . . . , ŷn ŷi = yix
b1i
1 · · ·xbnin

xλŷβ
xa1

1 · · ·xann ŷc1
1 · · · ŷcnn for

(λ, β) = (
∑n
i=1 aiρi,

∑n
i=1 ciαi) ∈ P ⊕Q

k a field of characteristic zero
k[[ŷ]] k[[ŷ1, . . . , ŷn]]
k[[x, ŷ]] k[[x1, . . . , xn, ŷ1, . . . , ŷn]]
m ideal in k[[x, ŷ]] consisting of series with constant term zero

As discussed in the Introduction, we work with a global transpose, relative to [9]. To
avoid confusion, we will be explicit about this transpose in terminology and notation.
We also follow [25] in working in a lower-dimensional space than [9]. For details,
including an explanation of why the additional dimensions are unnecessary, see [25,
Remarks 2.1, 2.12, 2.13].

For the purpose of comparison, Table 2 gives this initial data in the context of the
more general setup of [9]. Table 2 is designed for easy comparison with [25, Table 1].
The general setup leaves several choices, and we have made these choices in ways that
are natural to the root-system context. We see the explicit transpose in the line of
Table 2 describing εij .

Table 2: Initial data for a transposed scattering diagram with prin-
cipal coefficients, in the context of the general setup

General setup Transposed, principal coefficients

N Q⊕ P (root lattice and weight lattice)
M = Hom(N,Z) P∨ ⊕Q∨ (co-weight lattice and co-root lattice)
Nuf ⊆ N Root lattice Q, identified with Q⊕ {0} ⊂ Q⊕ P
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Table 2: (continued)

General setup Transposed, principal coefficients

I
Two copies of {1, . . . , n}, one indexing the simple roots
in N and one indexing the fundamental weights in N

Iuf ⊆ I {1, . . . , n}, indexing the simple roots in N
{ · , · } : N ×N → Q {(β1, λ1), (β2, λ2)} = −ω(β1, β2) + 〈λ2, β1〉 − 〈λ1, β2〉
N◦ ⊆ N Q∨ ⊕ P∨ (co-root lattice and co-weight lattice)
M◦ = Hom(N◦,Z) P ⊕Q (weight lattice and root lattice)

di
di = δ−1

i = K(αi,αi)
2 = 2

K(α∨
i
,α∨
i

) so α∨i = diαi

di same on both copies of {1, . . . , n}, so ρ∨i = diρi

s = (ei : i ∈ I) s = (α1, . . . , αn, ρ1, . . . , ρn) basis for Q⊕ P

N+ = N+
s

Q+ = {
∑n
i=1 aiαi : ai ∈ Z, ai > 0,

∑n
i=1 ai > 0}

positive part of root lattice

[ · , · ]s : N ×N → Q

[αi, αj ]s =
{
αi, α

∨
j

}
= ω(α∨j , αi) = bji

[αi, ρj ]s = 〈ρ∨j , αi〉 = δij (Kronecker delta)
[ρi, αj ]s = −〈ρi, α∨j 〉 = −δij
[ρi, ρj ]s = 0

εij = [ei, ej ]s entries in matrix
[
BT I
−I 0

]
(n× n blocks)

(e∗i : i ∈ I) (ρ∨i , . . . , ρ∨n , α∨1 , . . . , α∨n) basis for P∨ ⊕Q∨

(fi : i ∈ I) (ρi, . . . , ρn, α1, . . . , αn) basis for P ⊕Q

p∗ : Nuf →M◦
p∗(αi) = (

∑n
j=1 bjiρj , αi)

p∗(β) = (φ∨ 3 Q∨ 7→ ω(φ∨, β), β) for β ∈ Q
(vi ∈M◦ : i ∈ I) (p∗(α1), . . . , p∗(αn), ρ1, . . . , ρn)
(zi : i ∈ I) (x1, . . . , xn, y1, . . . , yn) indeterminates

z(λ,β) xλyβ = xa1
1 · · ·xann yc1

1 · · · ycnn for
(λ, β) = (

∑n
i=1 aiρi,

∑n
i=1 ciαi) ∈ P ⊕Q

(ζi = zvi : i ∈ I) (ŷ1, . . . , ŷn, x1, . . . , xn) for ŷi = yix
b1i
1 · · ·xbnin

ζ(β,λ) xλŷβ = xa1
1 · · ·xann ŷc1

1 · · · ŷcnn for
(β, λ) = (

∑n
i=1 ciαi,

∑n
i=1 aiρi) ∈ Q⊕ P

k a field of characteristic zero
k[[ζ]] k[[x, ŷ]] = k[[x1, . . . , xn, ŷ1, . . . , ŷn]]

m ideal in k[[x, ŷ]] consisting of series with constant term
zero

We work in the formal power series ring k[[x, ŷ]] or, sometimes for convenience, in
the quotient k[[x, ŷ]]/mk+1 for k > 0. A wall (d, fd) consists of a codimension-1 cone
d in V ∗ and a function fd ∈ k[[ŷ]] (or in k[[ŷ]]/mk+1) such that:

(i) d is contained in β⊥ for some primitive β ∈ Q+ and defined by inequalities
of the form 〈p, φ〉 6 0 for φ ∈ Q.

(ii) fd = fd(ŷβ) is in the univariate power series ring k[[ŷβ ]] for this primitive β
(or fd ∈ k[[ŷβ ]]/〈ŷ(k+1)β〉).

A wall (d, fd) is incoming if the vector ω( · , β) ∈ V ∗ is in d and otherwise it is outgoing.
Two walls are parallel if they are contained in the same hyperplane.
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A scattering diagram is a collectionD of walls such that the setDk of walls (d, fd) ∈
D with fd 6≡ 1 modulo mk+1 is finite for all k > 1. The support Supp(D) is the union
of the walls of D.

Given a scattering diagram D, a generic path for D is a piecewise differentiable
path γ : [0, 1]→ V ∗ that:

• does not pass through the intersection of any two non-parallel walls of D;
• does not pass through the relative boundary of any wall;
• has endpoints γ(0) and γ(1) contained in V ∗ r Supp(D); and
• crosses walls only transversely.

Suppose γ is a generic path for D and (d, fd) is a wall of D with γ(t) ∈ d for some
t ∈ (0, 1). The wall-crossing automorphism pγ,d,t : k[[x, ŷ]]→ k[[x, ŷ]] associated to this
crossing is given by

pγ,d,t(xλ) = xλf
〈λ,±β∨〉
d ,(2)

pγ,d,t(ŷφ) = ŷφf
ω(±β∨, φ)
d ,(3)

where β∨ is the normal vector to d that is contained in Q+ and is primitive in Q∨,
taking +β∨ if 〈γ′(t), β〉 < 0 or −β∨ if 〈γ′(t), β〉 > 0. (If γ is not differentiable at t,
the sign of 〈γ′(t), β〉 still makes sense, recording the direction in which γ crosses the
wall.) The explicit dependence on t in the notation pγ,d,t is meant to emphasize that
γ might cross d multiple times, and in different directions, so that the sign chosen
in (2) and (3) depends on more than just γ and d.

For each k > 1, define pγ,Dk
to be pγ,d`,t` ◦ · · · ◦ pγ,d1,t1 : k[[x, ŷ]] → k[[x, ŷ]] such

that d1, . . . , d` is the sequence of walls of Dk crossed by γ with di crossed at time ti
and t1 6 t2 6 · · · 6 t`. (There is a finite sequence of crossings because Dk is finite
and because γ is generic.) Define the path-ordered product pγ,D : k[[x, ŷ]] → k[[x, ŷ]]
to be limk→∞ pγ,Dk

. We say D is consistent if pγ,D depends only on γ(0) and γ(1).
By [25, Proposition 2.4], D is consistent if and only if each Dk is consistent modulo
mk+1. When D is consistent and p, q ∈ V ∗ r Supp(D), we define pp,q,D = pγ,D for γ
a generic path from p to q, which exists by [25, Proposition 2.2].

It is useful to reinterpret pγ,D as a map on Laurent monomials sending xλyφ

to xλyφf
〈λ,±β∨〉
d (with the choice of sign for ±β∨ as in the definition). With that

interpretation, the following is [25, Proposition 2.5], translated into our setup.

Proposition 2.2. A path-ordered product pγ,D is determined entirely by its values
pγ,D(x1), . . . , pγ,D(xn), or equivalently by its values pγ,D(xλ) for λ ∈ P .

Two scattering diagrams D and D′ are equivalent if and only if pp,q,D = pp,q,D′ for
all p, q ∈ V ∗ r (Supp(D) ∪ Supp(D′)). A general point is a point p ∈ V ∗ contained
in at most one hyperplane β⊥ with β ∈ Q+. Given a scattering diagram D and a
general point p, write fp(D) =

∏
d3p fd ∈ k[[ŷ]]. By [9, Lemma 1.9], two scattering

diagrams D and D′ are equivalent if and only fp(D) and fp(D′) agree on all general
points p. A scattering diagram hasminimal support if no equivalent scattering diagram
has strictly smaller support. Every consistent scattering diagram is equivalent to a
scattering diagram D with minimal support and such that each Dk has minimal
support [25, Proposition 2.8].

Given a scattering diagram D and β ∈ Q+, the rampart of D associated to β is
the union of all supports of walls of D contained in β⊥. For p ∈ V ∗, write RamD(p)
for the set of ramparts R of D such that p ∈ R, and write D r RamD(p) for the set
of walls of D not contained in any rampart in RamD(p).

If D is consistent and has minimal support, we say p, q ∈ V ∗ are D-equivalent if
and only if there is a path γ from p to q on which RamD( · ) is constant. This happens
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if and only if RamD(p) = RamD(q) and p and q are in the same path-connected
component of (∩RamD(p)) r (Supp(D r RamD(p))). The closure of a D-class is a
D-cone.

A closed convex cone in V ∗ is a subset of V ∗ that is closed in the usual sense,
and also closed under addition and closed under nonnegative scaling. A subset F of a
closed convex cone C is a face of C if it is cone and has the property that if x, y ∈ C
and F contains some point in the line segment xy besides x and y, the whole segment
xy is in F . A fan is a set F of closed convex cones such that if C ∈ F then every face
of C is in F , and such that if C,D ∈ F then C ∩D is a face of C and a face of D.
We write |F| for the union of the cones in F . A fan F is complete if |F| is the entire
ambient vector space.

If D is consistent and has minimal support, then each D-cone is a closed convex
cone [25, Proposition 3.5] and the collection Fan(D) of all D-cones and their faces is
a complete fan in V ∗ by [25, Theorem 3.1].

2.3. Transposed cluster scattering diagrams. An exchange matrix B deter-
mines the transposed cluster scattering diagram with principal coefficients ScatT (B).
This is the unique (up to equivalence) consistent scattering diagram that is ob-
tained by appending outgoing walls to an initial scattering diagram {(α⊥i , 1 + ŷi) : i
= 1, . . . , n}. In the more general (“non-transposed”) setup of [25] (as described in
Table 2), the scattering diagram ScatT (B) is Scat(B̃, s) for B̃ = [BT In], where In is
an identity matrix, and s = (α1, . . . , αn, ρ1, . . . , ρn). We write ScatT (B) rather than
Scat(BT ) because we think of B as our primary object, and we want to think of the
global transpose not as a modification of B, but as a choice of conventions for creating
a scattering diagram. The fan Fan(ScatT (B)) is denoted ScatFanT (B) and called the
transposed scattering fan.

We pause here to quote a result that supports the use of root systems in our setup
for scattering diagrams.
Theorem 2.3. If B is skew-symmetric and acyclic, then every wall of ScatT (B) is
normal to a root.

A priori, every wall is normal to a positive vector in the root lattice, not necessarily
a root. Theorem 2.3 follows from [9, Proposition 10.1]. (See also [9, Example 10.4].) It
also follows from [3, Lemma 11.4] when B is non-degenerate, relaxing the acyclicity
requirement but requiring the existence of a genteel potential. We expect that the
theorem extends to the case where B is merely skew-symmetrizable.

The following useful fact about transposed cluster scattering diagrams with prin-
cipal coefficients is proved by applying the antipodal map throughout and observing
that the sign changes cancel when we check consistency.
Proposition 2.4. For any exchange matrix B,

ScatT (−B) =
{

(−d, fd((ŷ′)β)) : (d, fd(ŷβ) ∈ ScatT (B)
}
,

where the ŷi are the monomials defined as in Table 1 using B while the ŷ′i are defined
using −B, and fd((ŷ′)β) is obtained from fd(ŷβ) by replacing each ŷi by ŷ′i.

We write A•(B) for the cluster algebra with principal coefficients associated to B,
in the sense of [8, Definition 3.1]. As discussed above, we have passed from wide to tall
extended exchange matrices, and this is the reason for dealing with transposed scatter-
ing diagrams. Thus A•(B) is the cluster algebra associated (as in [8, Definition 2.12])
to the extended exchange matrix [BI ], where I is an identity matrix.

A cluster monomial is a monomial in the cluster variables in some seed of A•(B).
(Conventions on cluster monomials differ, but we take monomials in the “unfrozen”
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cluster variables, not including the “frozen”/tropical variables.) We quote two con-
structions of cluster monomials for A•(B). The first is in terms of broken lines.

Fix a point p in the dominant chamber D such that p is not contained in any
hyperplane β⊥ for β ∈ Q. We will define a theta function ϑλ for every nonzero weight
λ ∈ P r {0}. Our definition will not depend on the choice of p. (This is not obvious,
but rather follows from [9, Theorem 3.5], which is a special case of results of [5,
Section 4].)

Let γ : (−∞, 0] → V ∗ be a piecewise linear path with finitely many domains of
linearity. To each domain L of linearity of γ, assign a monomial cLxλLyβL with cL ∈ k
and (λL, βL) ∈ P ⊕Q. Then γ is a broken line for λ with endpoint p if the path and
the monomials satisfy the following conditions.

(i) γ(0) = p.
(ii) γ is disjoint from all relative boundaries of walls of ScatT (B) and disjoint

from all intersections of non-parallel walls of ScatT (B).
(iii) In each domain L of linearity, γ′ is constantly equal to −λL.
(iv) If L is the unbounded domain of linearity of γ, then cLxλLyβL = xλ.
(v) At each point t of nonlinearity, passing (as the parameter increases) from a

domain L of linearity to a domain L′ of linearity, by (ii) there exists β∨ prim-
itive in Q∨ such that all walls containing γ(t) are in (β∨)⊥ and 〈λL, β∨〉 > 0.
If f is the product of the fd for all walls (d, fd) with γ(t) ∈ d, then cL′xλL′ yβL′
equals cLxλLyβL times a term in f 〈λL,β∨〉.

These conditions in particular allow us to recover the monomials from the path γ.
Writing cγxλγyβγ for the monomial on the domain of linearity containing 0, we

define the theta function ϑλ to be the sum, over all broken lines for λ with endpoint
p, of the monomials cγxλγyβγ . This is an element of xλk[[ŷ]]. (We emphasize that the
monomial on a domain L of linearity is cLxλLyβL , not cLxλL ŷβL . Thus when the
monomial changes as described in (v), both λL and βL change.)

The subtleties inherent in computing theta functions are compounded by the ap-
pearance of both roots and co-roots in the definition. We give some examples of
computing theta functions in rank 2 in Section 3.4.

The dominant chamber D is a cone in ScatFanT (B). Write ChamberFanT (B) for
the subfan of ScatFanT (B) consisting of D, all maximal cones D′ adjacent to D, all
maximal cones adjacent to such D′, etc., together with all faces of these cones. The
notation ChamberFanT (B) will be short-lived in this paper, as almost immediately it
will be replaced by a more enlightening notation. The following is immediate from [25,
Theorem 5.2] (a version of [9, Theorem 4.9]), from [9, Corollary 5.9], and from the
definition of g-vectors in [8, Section 6].

Theorem 2.5. The map λ 7→ ϑλ is a bijection from P ∩|ChamberFanT (B)| to the set
of cluster monomials in A•(B). If λ ∈ P ∩|ChamberFanT (B)|, then λ is the g-vector
of the cluster monomial ϑλ. There is a bijection from rays of ChamberFanT (B) to
cluster variables in A•(B) sending each ray to ϑλ, where λ is the shortest vector in
P contained in the ray.

The g-vector is defined to be an integer vector, but we interpret elements of P as
g-vectors by taking fundamental-weight coordinates. Define gFan(B) to be the set of
all cones C such that C is the nonnegative linear span of the g-vectors of a subset of
a cluster of A•(B). The following dual version of [9, Theorem 0.8] is an immediate
corollary of Theorem 2.5.

Corollary 2.6. The set gFan(B) is a fan and coincides with ChamberFanT (B).
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Accordingly, we call gFan(B) the g-vector fan of B, and we will refer to gFan(B)
rather than ChamberFanT (B) through the rest of the paper.

Remark 2.7. In [25, Theorem 5.2], there is an operator Clearfr that does not appear
in Theorem 2.5 because the latter concerns principal coefficients. In the language
of [25], this is because each term of each ϑλ contains only positive powers of the ŷi,
each of which contains only positive powers of the frozen variables yj .

The following is [25, Theorem 4.6] in our transposed principal-coefficients setting.

Theorem 2.8. If F and G are adjacent maximal cones of gFan(B), then the function
fp(ScatT (B)) is 1 + ŷβ for every general point p in F ∩ G, where β is the primitive
normal to F ∩G in Q+.

Our second construction of cluster monomials is in terms of path-ordered products.
The following is a rephrasing of [25, Theorem 5.6].

Theorem 2.9. If λ ∈ P is contained in a cone of gFan(B), then the cluster monomial
ϑλ with g-vector λ is pq,p,ScatT (B)(xλ) for any point p in the interior of the dominant
chamber D and any point q in the interior of a maximal cone C of gFan(B) such that
λ ∈ C.

The function pq,p,ScatT (B)(xλ) is Fλ · xλ for some Fλ ∈ k[[ŷ]]. By [8, Corollary 6.3],
the cluster variable with g-vector λ is xλ times a polynomial in the ŷ called the F -
polynomial of the cluster variable. (This works because in the principal coefficients
case, the denominator in [8, (6.5)] is 1.) Combining Theorem 2.5 and Theorem 2.9,
we have the following immediate corollary.

Corollary 2.10. If λ ∈ P is the g-vector of a cluster variable, the corresponding
F -polynomial is x−λ · pq,p,ScatT (B)(xλ) for any point p in the interior of the dominant
chamber D and any point q in the interior of a maximal cone C of gFan(B) such that
λ ∈ C.

We conclude this section by pointing out how the results of [9], as rephrased in [25],
prove [8, Conjecture 7.12], one of the major conjectures of [8]. We write µk for matrix
mutation in direction k and ηBk : V ∗ → V ∗ for the mutation map as defined, for exam-
ple, in [25, Section 4.1]. In light of Corollary 2.6, the following result is a consequence
of [25, Corollary 4.5], which in turn is a consequence of [9, Theorem 1.24].

Theorem 2.11. For any exchange matrix B and any k ∈ {1, . . . , n}, the mutation
map ηBTk is a piecewise-linear isomorphism from gFan(B) to gFan(µk(B)).

Each cluster monomial in A•(B) is also a cluster monomial in A•(µk(B)). The
conjecture [8, Conjecture 7.12] states that the g-vector of the cluster monomial with
respect to µk(B) is obtained from its g-vector with respect to B by a particular
piecewise-linear map. In [24, Section 8], it was pointed out that this map is the
mutation map ηBTk . In light of Theorem 2.5 and the fact that ηBTk is an automorphism
of P , Theorem 2.11 is [8, Conjecture 7.12].

3. Scattering diagrams of rank 2
Rank-2 scattering diagrams of finite type are easy to understand and are treated as
part of the finite-type discussion in Section 4. In contrast, rank-2 scattering diagrams
of non-finite type are complicated. In most cases, there is a region where the walls of
the diagram are not well understood. Combining [3, Theorem 1.1] and [3, Theorem 1.5]
yields a formula that in principle describes these walls when B is skew-symmetric, but
the details are quite complicated. In [9, Example 1.15], the expectation is expressed
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that every rational ray in this region is a wall with a nontrivial function attached. If
this is true, then every ray (rational or not) in the region is a cone in the scattering
fan. When the Cartan matrix associated to B is of affine type, this mysterious region
collapses to a single limiting wall.

We begin this section with some generalities on infinite rank-2 type. Although
we ultimately handle only the affine cases, we start in the general case, to give a
unified framework for the affine cases and to highlight the difficulties encountered
in other cases. We use Theorem 2.9 and a computation of certain limits of ratios
of cluster variables to find the function attached to the limiting wall in the affine
case, without any need for representation-theoretic or algebraic-geometric machinery.
Computations related to our limit computations are found in [4, 34]. See Remarks 3.7
and 3.14. The skew-symmetric case of our result recovers the affine case of a general
formula conjectured in [11, Section 1.4] and proved in [32, Section 6]. (See also [9,
Example 1.15].) In the non-skew-symmetric affine case, our result may be new.

3.1. Rank-2 infinite type. We now consider the transposed cluster scattering di-
agram with principal coefficients for the exchange matrix B = [ 0 b

a 0 ] with ab 6 −4.
Up to the symmetry of swapping the indices 1 and 2, we may as well assume that
a < 0, so that b > 0. Continuing the notation above, we have n = 2 and we have
initial cluster variables x1 and x2. For each i ∈ Z, we define xi+1 to be the cluster
variable in A•(B) obtained by exchanging xi−1 out of the cluster {xi−1, xi}. Thus,
equivalently, xi−1 is obtained by exchanging xi+1 out of the cluster {xi, xi+1}. Write
gi for the g-vector of xi. In our pictures and verbal descriptions, we will let ρ1 point
to the right of the plane and ρ2 point up, give them the same length in the page, and
talk about slopes of lines in the usual sense for this placement of ρ1 and ρ2.

We follow [24, Section 9] in characterizing the gi directly. (Compare [9, Exam-
ple 1.15] and [6, Section 3].) We begin by defining a polynomial Pm in ab for each
m > −2. Set P−2 = −1 and P−1 = 0, and for m > 0, define

(4) Pm =
{
−abPm−1 − Pm−2 if m is even, or
Pm−1 − Pm−2 if m is odd.

Several of the Pm are shown in Table 3.

m −2 −1 0 1 2 3 4 5
Pm −1 0 1 1 −ab− 1 −ab− 2 a2b2 + 3ab+ 1 a2b2 + 4ab+ 3

Table 3. The polynomials Pm

The polynomials Pm are defined in [24, Section 9] using a summation formula, and
a specific relationship [24, (9.10)] is described between the Pm and the Chebyshev
polynomials of the second kind. The recursive definition given here for the Pm fol-
lows by the defining recursion for the Chebyshev polynomials. As observed in [24,
Section 9], each Pm is positive for m > 0. By [24, Proposition 9.6], the g-vectors are
given by

(5) gi =


−P−i−1ρ1 − aP−i−2ρ2 if i is odd and i 6 −1,
−bP−i−1ρ1 + P−i−2ρ2 if i is even and i 6 0,
−Pi−3ρ1 − aPi−2ρ2 if i is odd and i > 1,
−bPi−3ρ1 + Pi−2ρ2 if i is even and i > 2,

Write Ci for the cone spanned by the g-vectors of xi and xi+1. In particular, C1 is the
dominant chamberD. We write ci for the positive root orthogonal to gi. Recalling that
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Figure 2. A transposed scattering diagram for an infinite rank-2 case

the fundamental roots ρi are dual to the simple co-roots α∨i = δ−1
i αi and observing

that the diagonalizing factors in this case must be δ1 = gcd(−a,b)
b and δ2 = gcd(−a,b)

−a ,
we compute

(6) ci =



P−i−2α1 − aP−i−1α2 if i is even and i 6 −2,
bP−i−2α1 + P−i−1α2 if i is odd and i 6 −1,
α1 if i = 0,
α2 if i = 1, or,
Pi−2α1 − aPi−3α2 if i is even and i > 2,
bPi−2α1 + Pi−3α2 if i is odd and i > 3,

The fan gFan(B) covers all of V ∗ except the positive linear span C∞ of the vectors

g∞ = −2
√
−ab ρ1 − a(

√
−ab+

√
−ab− 4) ρ2 and

g−∞ = −b(
√
−ab+

√
−ab− 4) ρ1 + 2

√
−ab ρ2.

(7)

These vectors are in the limiting directions of gi as i→∞ and i→ −∞ respectively.
As we discuss in Section 3.2, in the affine case (when ab = −4), the vectors g∞ and
g−∞ are parallel, so that C∞ is a single limiting ray.

The situation (with a = −3 and b = 2) is represented in Figure 2, together with
indications of notational conventions that were just described and that will be given
below. A similar picture with a = −2 and b = 2 appears later as Figure 3.

By Theorem 2.5 and Theorem 2.8, the walls of ScatT (B) not contained in C∞ are
the rays spanned by the gi, each marked with the function (1 + ŷci). The remaining
possibilities for walls are the rational rays contained in C∞. We consider a scattering
diagram in the equivalence class of ScatT (B) with one wall in each such rational ray,
without assuming that the attached functions are nontrivial. Thus, for each rational
number in reduced form p/q with p > 0 and q < 0 and with

(8) a(
√
−ab+

√
−ab− 4)

2
√
−ab

6
p

q
6

2
√
−ab

−b(
√
−ab+

√
−ab− 4)

,

let (dp/q, fp/q) be the wall such that dp/q is the ray spanned by qρ1 +pρ2. Then fp/q is
a formal power series in ŷcp/q , where cp/q = bp

gcd(bp,aq)α1 + aq
gcd(bp,aq)α2 is the primitive
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element of Q+ that is orthogonal to qρ1 + pρ2. The primitive element of Q∨ parallel
to cp/q is c∨p/q = pα∨1 − qα∨2 .

Fix p/q satisfying (8) and choose a path γ∞ : (0, 1] → V ∗ r {0} and a path
γ−∞ : (0, 1]→ V ∗ r {0} such that

• limt→0+ γ±∞(t) = g±∞
• γ±∞(1) = ρ1 + ρ2
• γ∞ moves in a strictly monotone-clockwise manner about 0,
• γ−∞ moves in a strictly monotone-counterclockwise manner about 0.

For each i > 1, let γi be a subpath of γ∞ starting in the interior of Ci and ending
at ρ1 + ρ2. For i 6 1, let γi be a subpath of γ−∞ starting in the interior of Ci and
ending at ρ1 + ρ2. For consistency, take γ1 to be the constant path at ρ1 + ρ2.

We abbreviate pγ,ScatT (B) as pγ for any path γ. We define p∞ = limi→∞ pγi .
This limit exists because for all k, there exists an ik such that, for i > ik, the
path obtained by deleting γi from γ∞ crosses no wall of ScatT (B)k. We also de-
fine p−∞ = limi→−∞ pγi , and this limit exists for the analogous reason. Indeed, the
limit definitions are only necessary when ab = −4. When ab < −4, we may as well
complete γ∞ and γ−∞ to paths from the full interval [0, 1] to V ∗ r {0}. These paths
are generic because g∞ and g−∞ are not contained in a rational ray, and the limits
p∞ and p−∞ coincide with pγ∞ and pγ−∞ .

We also define paths γ± : (0, 1]→ V ∗ r {0} such that
• limt→0+ γ±∞(t) = qρ1 + pρ2
• γ±∞(1) = g±∞
• γ+ moves in a strictly monotone-clockwise manner about 0,
• γ− moves in a strictly monotone-counterclockwise manner about 0.

Write p± for the path-ordered products obtained from the paths γ±, taking appro-
priate limits as above. When ab = −4, we think of γ± as empty paths and treat an
automorphism p± as the identity when it appears in formulas.

Write pp/q for the wall-crossing automorphism pγ,dp/q for a path γ that crosses dp/q
with derivative ρ1 + ρ2.

Since p > 0 and q < 0, in particular p− q > 0. Since fp/q is a (univariate) formal
power series in ŷcp/q , the following proposition determines fp/q completely.

Proposition 3.1. For all k > 0, the coefficient of ŷkcp/q in fp/q equals the coefficient
of ŷkcp/q in

(
x1x2

p−∞(p−(x1x2))
) 1
p−q . Each ŷkcp/q is ŷi1ŷ

j
2 with j

i = aq
bp , and every other

term in
(

x1x2
p−∞(p−(x1x2))

) 1
p−q involves ŷi1ŷ

j
2 with j

i <
aq
bp .

Proof. Consistency of the scattering diagram says that p−∞ ◦ p− ◦ p−1
p/q ◦ p

−1
+ ◦ p−1

∞ is
the identity map, so we apply it to p∞(p+(pp/q(x1x2)) to obtain
(9) p−∞(p−(x1x2)) = p∞(p+(pp/q(x1x2)).

We calculate pp/q(x1x2) = x1x2f
〈ρ1+ρ2,−pα∨1 +qα∨2 〉
d = x1x2f

q−p
p/q . Thus the quantity

p∞(p+(pp/q(x1x2))) is computed by starting with x1x2f
q−p
p/q and repeatedly replacing

a monomial by the same monomial times an integer power of a power series in ŷβ for
various β ∈ Q+. Specifically, each β is of the form c1α1 + c2α2 such that the slope c2

c1
of the ray spanned by β is positive but strictly less than aq

pb , which is the slope of the
ray spanned by cp/q.

Therefore, by (9), every term in p−∞(p−(x1x2))
x1x2

involves ŷi1ŷ
j
2 with j

i 6
aq
bp , and the

terms where j
i = aq

bp are exactly fq−pp/q . Thus, to find fp/q, we raise p−∞(p−(x1x2))
x1x2

to
the power 1

q−p and restrict to terms involving ŷi1ŷ
j
2 with j

i = aq
bp . �
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By definition, p−∞(p−(x1x2)) is p−∞(x1x2 · Mp/q(ŷ1, ŷ2)) for some Mp/q(ŷ1, ŷ2)
in k[[ŷ]]. Thus

(10) p−∞(p−(x1x2)) = p−∞(x1x2) · p−∞(Mp/q(ŷ1, ŷ2)).

The factor p−∞(Mp/q(ŷ1, ŷ2)) is difficult to deal with in general. This is the reason
we eventually restrict to the affine case, where p−∞(Mp/q(ŷ1, ŷ2)) = 1. However,
before restricting to the affine case, we make a general observation about the fac-
tor p−∞(x1x2). The observation uses the following lemma, which is easily verified
using (4) and (5).

Lemma 3.2. For i 6 −2, gi =
{
bgi+1 − gi+2 if i is even, or
−agi+1 − gi+2 if i is odd.

We will also need a polynomial Qm in a and b for m > 0, given by Q0 = 1 and
Q1 = −1 and by the recursion

(11) Qm =
{
bQm−1 −Qm−2 if m is even, or
−aQm−1 −Qm−2 if m is odd.

Several values of Qm are shown in Table 4.

m 0 1 2 3 4 5
Qm 1 −1 −b − 1 ab + a + 1 ab2 + ab + 2b + 1 −a2b2 − a2b − 3ab − 2a − 1

Table 4. The polynomials Qm

Proposition 3.3. If Fi is the F -polynomial of the cluster variable xi, then

(12) x1x2

p−∞(x1x2) = lim
i→−∞

F
Q−i−1
i · F−Q−ii+1 .

Proof. We use Theorem 2.9 and Theorem 2.5 to write xi = pγi(xgi) and xi+1 =
pγi(xgi+1) for all i ∈ Z. We are justified in using the same path γi in both of these
equations because Ci is the cone spanned by gi and gi+1. By an easy induction using
Lemma 3.2 and (11), we show that −giQ−i−1 + gi+1Q−i = ρ1 + ρ2 for all i 6 −1.
Thus x−Q−i−1

i x
Q−i
i+1 = pγi(x1x2). Thus p−∞(x1x2) is limi→−∞ x

−Q−i−1
i x

Q−i
i+1 , which

equals x1x2 limi→−∞ F
−Q−i−1
i · FQ−ii+1 . �

3.2. Rank-2 affine type. In the affine cases (when ab = −4), the considerations
of Section 3.1 are sufficient to determine the function attached to the limiting wall.
We will prove the following theorem. The remaining affine cases can be obtained from
the theorem by Proposition 2.4 and/or by swapping the indices 1 and 2.

Theorem 3.4. The function on the limiting wall of ScatT
([ 0 2
−2 0

])
is 1

(1− ŷ1ŷ2)2 .

The function on the limiting wall of ScatT
([ 0 1
−4 0

])
is 1 + ŷ1ŷ

2
2

(1− ŷ1ŷ2
2)2 .

We start with the first assertion, which is the case a = −2 and b = 2 in the notation
of Section 3.1. Figure 3 shows ScatT (B) in this case. For these values of a and b, the
slope of the limiting ray is p/q = −1, the positive root orthogonal to that ray is
c−1 = α1 +α2, and Qm = −2m+ 1. Combining Propositions 3.1 and 3.3 in this case,
we obtain the following proposition.

Algebraic Combinatorics, Vol. 3 #3 (2020) 616



A combinatorial approach to scattering diagrams

x3 x2

x1

x0

x−1

x−2

C2

C1

C0C−1

C−2 γ−∞

γ∞

Figure 3. A transposed scattering diagram for the skew-symmetric
affine rank-2 case

Proposition 3.5. If a = −2 and b = 2, then for all k > 0, the coefficient of ŷk1 ŷk2 in
f−1 equals the coefficient of ŷk1 ŷk2 in

√
limi→−∞ F 2i+3

i · F−2i−1
i+1 .

We will call a term diagonal if it is a constant times ŷk1 ŷk2 and super-diagonal if it
is a constant times ŷj1ŷk2 for k > j. The following lemma will let us evaluate the limit
in Proposition 3.5.
Lemma 3.6. When a = −2 and b = 2, the F -polynomial Fi has the following properties
for i 6 0.

(i) As a polynomial in ŷ1 (with coefficients polynomials in ŷ2), the leading term
is ŷ−i1 (1 + ŷ2)−i+1.

(ii) The only super-diagonal term is ŷ−i1 ŷ−i+1
2 .

(iii) The diagonal terms are (j + 1)ŷj1ŷ
j
2 for 0 6 j 6 −i.

Proof. We argue by induction on −i. Unwrapping [8, Proposition 5.1] in this case, we
obtain F0 = 1 + ŷ2 and F−1 = 1 + ŷ1(1 + ŷ2)2, and for i 6 −2 we obtain

(13) Fi =
F 2
i+1 + ŷ−i−2

1 ŷ−i−1
2

Fi+2
.

(The exponents on ŷ1 and ŷ2 come from (6).) We have established the base cases
i = 0 and i = −1, and for the rest of the proof, we take i < −1. By induction and by
dividing leading terms, assertion (i) follows easily from (13).

To prove the remaining assertions, we track the diagonal and super-diagonal terms
through (13). We perform long division and, since we know that the result is a poly-
nomial, we can ignore terms that are not diagonal or super-diagonal. Indeed, because
by induction we know that the highest order term in the denominator of (13) is super-
diagonal, we need only track super-diagonal terms in the numerator. By induction,
the relevant terms in the numerator are

ŷ−2i−2
1 ŷ−2i

2 + ŷ−i−2
1 ŷ−i−1

2 + ŷ−i−1
1 ŷ−i2

−i−1∑
j=0

2(j + 1)ŷj1ŷ
j
2

and the relevant terms in the denominator are ŷ−i−2
1 ŷ−i−1

2 +
∑−i−2
j=0 (j + 1)ŷj1ŷ

j
2. Di-

vision yields super-diagonal and diagonal terms ŷ−i1 ŷ−i+1
2 +

∑−i
j=0(j + 1)ŷj1ŷ

j
2 as de-

sired. �

Lemma 3.6(iii) implies that, for i < 0, the restriction of Fi to diagonal terms agrees
with the formal power series

∑
k>0(k+ 1)ŷk1 ŷk2 = (1− ŷ1ŷ2)−2 up to the term ŷ−i1 ŷ−i2 .
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By Lemma 3.6(ii), the only super-diagonal terms in Fi have degree at least −i in ŷ1,
so the diagonal terms of F 2i+3

i · F−2i−1
i+1 agree, up to ŷ−i−1

1 ŷ−i−1
2 , with (1− ŷ1ŷ2)−4.

Thus Proposition 3.5 establishes the first assertion of Theorem 3.4.

Remark 3.7. In [34], there is a formal power series closely related to the function
f−1 on the limiting wall. It appears as a limit of “stable cluster variables” (certain
transformed F -polynomials).

We next prove the second assertion of Theorem 3.4. In this case, a = −4 and b = 1,
the slope of the limiting ray is p/q = −2, the positive root orthogonal to that ray is
c−2 = α1 +2α2, and Qm is − 3

2m+1 for m even or −3m+2 for m odd. We know that
the limit in Proposition 3.3 exists, so we are free to approach it on the even values
of i. We will do this by replacing i by 2i in the limit formula. Thus Propositions 3.1
and 3.3 give the following proposition.

Proposition 3.8. If a = −4 and b = 1, then for all k > 0, the coefficient of ŷk1 ŷ2k
2 in

f−2 equals the coefficient of ŷk1 ŷ2k
2 in 3

√
limi→−∞ F 6i+5

2i · F−3i−1
2i+1 .

Again, evaluating the limit will require determining some relevant coefficients of
the F -polynomials, but this time we must separate the even and odd indices. We will
also re-use the words diagonal and super-diagonal to deal with this case. We call a
term diagonal if it is a constant times ŷk1 ŷ2k

2 and super-diagonal if it is a constant
times ŷk1 ŷ`2 for ` > 2k. Furthermore, a term is super-super-diagonal if it is a constant
times ŷk1 ŷ`2 for ` > 2k + 1.

Lemma 3.9. Suppose a = −4 and b = 1. The even-indexed F -polynomials F2i for
i 6 0 have the following properties:

(i) As a polynomial in ŷ1 (with coefficients polynomials in ŷ2), the leading term
is ŷ−i1 (1 + ŷ2)−2i+1.

(ii) The only super-diagonal term is ŷ−i1 ŷ−2i+1
2 .

(iii) The diagonal terms are
∑−i
j=0(2j + 1)ŷj1ŷ

2j
2 .

The odd-indexed F -polynomials F2i+1 for i 6 −1 have the following properties:
(iv) As a polynomial in ŷ1 (with coefficients polynomials in ŷ2), the leading term

is ŷ−2i−1
1 (1 + ŷ2)−4i.

(v) The only super-diagonal terms are ŷ−2i−1
1 ŷ−4i

2 +
∑−i
j=1 4jŷ−i+j−1

1 ŷ−2i+2j−1
2 .

(vi) The diagonal terms agree with
(∑

j>0(2j+ 1)ŷj1ŷ
2j
2
)2 up to (−2i+ 1)ŷ−i1 ŷ−2i

2 .

Proof. We argue by induction on m 6 0 that Fm has the properties described
in the proposition. In this case [8, Proposition 5.1] says that F0 = 1 + ŷ2 and
F−1 = 1 + ŷ1(1 + ŷ2)4. Also, for i 6 −1

(14) F2i = F2i+1 + ŷ−i−1
1 ŷ−2i−1

2
F2i+2

.

and for i 6 −2,

(15) F2i+1 = (F2i+2)4 + ŷ−2i−3
1 ŷ−4i−4

2
F2i+3

.

(The monomials ŷ−i−1
1 ŷ−2i−1

2 and ŷ−2i−3
1 ŷ−4i−4

2 are ŷcm−1 for m = 2i or 2i + 1 and
cm−1 as in (6).) We have established the base cases m = 0 and m = −1, and for the
rest of the proof, we take m < −1. Assertions (i) and (iv) follow easily by induction.

To prove the remaining assertions, we track diagonal and super-diagonal terms
through the right sides of (14) and (15). Since we know that the right side is a
polynomial, we can simply perform polynomial long division and ignore all terms that
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are not diagonal or super-diagonal. Because we know by induction the highest-order
terms of the denominator of (14), we need only concern ourselves with super-diagonal
terms in the numerator. Similarly, in the numerator of (15), we need only concern
ourselves with super-super-diagonal terms.

For m = 2i, by induction the relevant terms in the numerator in (14) are

(16) ŷ−2i−1
1 ŷ−4i

2 +
−i∑
j=1

4jŷ−i+j−1
1 ŷ−2i+2j−1

2 + ŷ−i−1
1 ŷ−2i−1

2

and the relevant terms in the denominator are

(17) ŷ−i−1
1 ŷ−2i−1

2 +
−i−1∑
j=0

(2j + 1)ŷj1ŷ
2j
2 .

The relevant terms of the quotient are ŷ−i1 ŷ−2i+1
2 +

∑−i
j=0(2j + 1)ŷj1ŷ

2j
2 , as desired.

For m = 2i + 1, by induction, the relevant terms in the numerator are the super-
super-diagonal terms in

(
ŷ−i−1

1 ŷ−2i−1
2 +

∑−i−1
j=0 (2j+1)ŷj1ŷ

2j
2
)4+ŷ−2i−3

1 ŷ−4i−4
2 , namely

(18) ŷ−4i−4
1 ŷ−8i−4

2 + 4ŷ−3i−3
1 ŷ−6i−3

2

−i−1∑
j=0

(2j + 1)ŷj1ŷ
2j
2

+ 6ŷ−2i−2
1 ŷ−4i−2

2

(−i−1∑
j=0

(2j + 1)ŷj1ŷ
2j
2

)2
+ ŷ−2i−3

1 ŷ−4i−4
2 .

The relevant terms in the denominator are

(19) ŷ−2i−3
1 ŷ−4i−4

2 + ŷ−i−2
1 ŷ−2i−3

2

−i−1∑
j=0

4jŷj1ŷ
2j
2

+
(−i−1∑
j=0

(2j + 1)ŷj1ŷ
2j
2

)2
+ ŷ−i1 ŷ−2i

2

−i−3∑
j=0

bj ŷ
j
1ŷ

2j
2 ,

for some coefficients bj that (it will turn out) are not important. The super-diagonal
terms in the quotient are ŷ−2i−1

1 ŷ−4i
2 + 4ŷ−i−1

1 ŷ−2i−1
2

∑−i
j=0 jŷ

j
1ŷ

2j
2 and the diagonal

terms are

(20) 1 + (6ŷ1ŷ
2
2 − ŷ2

1 ŷ
4
2)
(−i−1∑
j=0

(2j + 1)ŷj1ŷ
2j
2

)2

− 16
(−i−1∑
j=0

jŷj1ŷ
2j
2

)( −i∑
j=0

jŷj1ŷ
2j
2

)
+ ŷ−i+2

1 ŷ−i+4
2

(−i−1∑
j=0

bj ŷ
j
1ŷ

2j
2

)
.

But (20) agrees, up to terms involving ŷ−i1 ŷ−2i
2 with

(21) 1 + (6ŷ1ŷ
2
2 − ŷ2

1 ŷ
4
2)
(

1 + ŷ1ŷ
2
2

(1− ŷ1ŷ2
2)2

)2
− 16

(
ŷ1ŷ

2
2

(1− ŷ1ŷ2
2)2

)
=
(

1 + ŷ1ŷ
2
2

(1− ŷ1ŷ2
2)2

)2
,

which equals =
(∑

j>0(2j + 1)ŷj1ŷ
2j
2
)2 as desired. �

Lemma 3.9 says in particular that for i 6 −1 the diagonal terms of F2i agree,
up to ŷ−i1 ŷ−2i

2 , with 1+ŷ1ŷ
2
2

(1−ŷ1ŷ2
2)2 and the diagonal terms of F2i+1 agree, up to ŷ−i1 ŷ−2i

2 ,

with
(

1+ŷ1ŷ
2
2

(1−ŷ1ŷ2
2)2

)2
. Furthermore, the only super-diagonal terms in either polynomial

have degree at least −i in ŷ1, so the diagonal terms of F 6i+5
2i · F−3i−1

2i+1 agree, up to

Algebraic Combinatorics, Vol. 3 #3 (2020) 619



Nathan Reading

ŷ−i−1
1 ŷ−2i−2

2 , with
(

1+ŷ1ŷ
2
2

(1−ŷ1ŷ2
2)2

)6i+5
·
(

1+ŷ1ŷ
2
2

(1−ŷ1ŷ2
2)2

)−6i−2
, which equals

(
1+ŷ1ŷ

2
2

(1−ŷ1ŷ2
2)2

)3
. Now

Proposition 3.8 completes the proof of Theorem 3.4.

3.3. Path-ordered products and Narayana numbers. As an easy consequence
of Corollary 2.10, for each ray of gFan(B), the F -polynomial of the correspond-
ing cluster variable is x−λ · pγ,ScatT (B)(xλ), where λ is the corresponding g-vector,
γ : (0, 1]→ V ∗ is any generic path contained in the union of the cones of gFan(B)
such that limt→0+ γ(t) is in the relative interior of the ray and γ(1) is in the positive
cone. (We interpret the path-ordered product pγ,ScatT (B) as a limit as in Section 3.1.)

For B of rank 2 and of affine type, we can write down the same formula for λ in
the limiting ray. We do not obtain a polynomial, but a formal power series in k[[ŷ]].
In this section, we compute this series in the symmetric rank-2 affine case.

We work in the notation of Section 3.1, with a = −2 and b = 2. We take λ =
−ρ1+ρ2, so that xλ = x−1

1 x2. Since the path-ordered products p+ and p− are the iden-
tity in this case, consistency says that p−∞ ◦ p−1

p/q ◦ p
−1
∞ is the identity map. Since also

pp/qx
−1
1 x2 = x−1

1 x2, we have p−∞(x−1
1 x2) = p∞(x−1

1 x2). We define N (ŷ1, ŷ2) ∈ k[[ŷ]]
to be the formal power series such that p−∞(x−1

1 x2) = p∞(x−1
1 x2) = x−1

1 x2N (ŷ1, ŷ2).
The symbol “N ” is to suggest Narayana: We now prove that the coefficients of
N (ŷ1, ŷ2) are given by Narayana numbers with an alternating sign. For i, j > 0,
the Narayana number is

(22) Nar(i, j) =


1 if i = j = 0,
0 otherwise if ij = 0, or
1
i

(
i
j

)(
i

j−1
)

if i > 1 and j > 1.

We will prove the following theorem.

Theorem 3.10.

(23) N (ŷ1, ŷ2) = lim
i→∞

Fi+1

Fi
= lim
i→−∞

Fi−1

Fi
= 1 + ŷ1

∑
i,j>0

(−1)i+j Nar(i, j)ŷi1ŷ
j
2.

Using the known generating function for the Narayana numbers (see for exam-
ple [15, Chapter 2], where the indexing conventions are slightly different) we have the
following immediate corollary of Theorem 3.10.

Corollary 3.11.

(24) N (ŷ1, ŷ2) =
1 + ŷ1 + ŷ1ŷ2 +

√
(1 + ŷ1 + ŷ1ŷ2)2 − 4ŷ1ŷ2

2 .

We now proceed to prove Theorem 3.10. As before (by Theorem 2.9 and Theo-
rem 2.5), xi = pγi(xgi) and xi+1 = pγi(xgi+1) for all i ∈ Z. Since a = −2 and b = 2,
by (5) we have gi+1 − gi = −ρ1 + ρ2 for i > 1 and gi − gi+1 = −ρ1 + ρ2 for i 6 −2.
We see that

(25) pγi(x−1
1 x2) =

{
x−1
i · xi+1 = x−1

1 x2F
−1
i · Fi+1 if i > 1, or

x−1
1+1 · xi = x−1

1 x2F
−1
i+1 · Fi if i 6 −2,

where Fi is the F -polynomial of the cluster variable xi. The first two equalities of (23)
follow.
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The remaining assertion of Theorem 3.10 is illustrated by the following two-
dimensional representation of N (ŷ1, ŷ2).

1
+ŷ1

+ŷ2
1 ŷ2

−ŷ3
1 ŷ2 +ŷ3

1 ŷ2
2

+ŷ4
1 ŷ2 −3ŷ4

1 ŷ2
2 +ŷ4

1 ŷ3
2

−ŷ5
1 ŷ2 +6ŷ5

1 ŷ2
2 −6ŷ5

1 ŷ3
2 +ŷ5

1 ŷ4
2

+ŷ6
1 ŷ2 −10ŷ6

1 ŷ2
2 +20ŷ6

1 ŷ3
2 −10ŷ6

1 ŷ4
2 +ŷ6

1 ŷ5
2

−ŷ7
1 ŷ2 +15ŷ7

1 ŷ2
2 −50ŷ7

1 ŷ3
2 +50ŷ7

1 ŷ4
2 −15ŷ7

1 ŷ5
2 +ŷ7

1 ŷ6
2

+ŷ8
1 ŷ2 −21ŷ8

1 ŷ2
2 +105ŷ8

1 ŷ3
2 −175ŷ8

1 ŷ4
2 +105ŷ8

1 ŷ5
2 −21ŷ8

1 ŷ6
2 +ŷ8

1 ŷ7
2

+ · · ·

To prove this remaining assertion, we begin with the following two propositions,
which amount to boundary conditions and a functional equation on N (ŷ1, ŷ2). The
first of the propositions is analogous to an observation already made in the proof of
Proposition 3.1.

Proposition 3.12.N (ŷ1, ŷ2) is 1 plus terms involving ŷi1ŷ
j
2 with i > j.

Proof. p∞(x−1
1 x2) is computed by starting with x−1

1 x2 and repeatedly replacing a
monomial by the same monomial times integer powers of power series in ŷβ for β ∈ Q+

of the form β = c1α1 + c2α2 with 0 < c2
c1
< 1. (See Figure 3.) �

Proposition 3.13.

(26) N
(
ŷ1(1 + ŷ2)−2, ŷ2

)
· (1 + ŷ2) = N

(
ŷ2(1 + ŷ1)−2, ŷ1

)
· (1 + ŷ1).

Proof. Define x̃i to be x1−i for all i ∈ Z. Then pγi(x−1
1 x2) = x̃−1

1−i · x̃2−i for i > 1, so
N (ŷ1, ŷ2)x−1

1 x2 = limi→−∞ x̃i · x̃−1
i+1. The cluster {x̃1, x̃2} = {x0, x−1} can be taken to

be the initial cluster in a cluster algebra with exchange matrix B =
[ 0 2
−2 0

]
, but with

non-principal coefficients. However, we can ignore coefficients by setting y1 = y2 = 1,
or equivalently setting ŷ1 = x−2

2 and ŷ2 = x2
1. Making this substitution on both sides

of the equation N (ŷ1, ŷ2) · x−1
1 x2 = limi→−∞ x̃i · x̃−1

i+1 and interpreting the new right
side, we obtain

(27) N (x−2
2 , x2

1) · x−1
1 x2 = N (x̃−2

2 , x̃2
1) · x̃−1

1 x̃2.

Using the usual (coefficient-free) exchange relations [8, (2.15)], we compute

x̃1 = x0 = 1 + x2
1

x2
, and x̃2 = x−1 = 1 + (1 + x2

1)2x−2
2

x1
.

Thus (27) becomes

(28) N (x−2
2 , x2

1) · x−1
1 x2

= N
(

x2
1

(1 + (1 + x2
1)2x−2

2 )2 ,
(1 + x2

1)2

x2
2

)
· x2

1 + x2
1
· 1 + (1 + x2

1)2x−2
2

x1
.

Canceling x−1
1 x2 and replacing x−2

2 by ŷ1 and x2
1 by ŷ2 in (28), we obtain

(29) N (ŷ1, ŷ2) = N
(

ŷ2

(1 + (1 + ŷ2)2ŷ1)2 , ŷ1(1 + ŷ2)2
)

1 + (1 + ŷ2)2ŷ1

1 + ŷ2
.

Finally, replacing ŷ1 by ŷ1(1 + ŷ2)−2 in (29), we obtain the proposition. �
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Proof of Theorem 3.10. Write N (ŷ1, ŷ2) =
∑
i,j>0 nij ŷ

i
1ŷ
j
2. Extracting the coefficient

of ŷi1ŷ
j
2 on both sides of (26), we obtain

(30)
j∑

k=0
nik

( −2i

j−k

)
+
j−1∑
k=0

nik

( −2i

j−1−k

)
=

i∑
k=0

njk

(−2j

i−k

)
+

i−1∑
k=0

njk

( −2j

i−1−k

)
Since

(
z
−1
)

= 0 for all z 6= −1, we can extend the second sum on each side (allowing
k = j or k = i respectively) and combine the two sums using the identity

(
z
w

)
+
(

z
w−1

)
=(

z+1
w

)
to obtain

(31)
j∑

k=0
nik

(−2i+1

j−k

)
=

i∑
k=0

njk

(−2j+1

i−k

)
To determine the nij from (31), we need “boundary conditions.” Proposition 3.12 says
that n00 = 1 and that otherwise nij = 0 for i 6 j. Thus for i > j, we see that (31)
writes nij in terms of other nonzero coefficients ni′j′ with j′ < j (or in terms of
n00 = 1), and thus uniquely determines nij by induction. Therefore, to complete the
proof, it is enough to verify that the coefficients described in Theorem 3.10 satisfy (31).

When i > j = 0, the recursion (31) says that ni0 = n00
(1
i

)
, which is 1 if i = 1 and

zero if i > 1. Thus when i > j = 1, the recursion says that ni1 = n10
(−1
i

)
= (−1)i.

When i > j > 1, the k = 0 terms of the recursion are zero and the nonzero terms of the
recursion are n`m with ` > m > 1. We want to show that when we replace each such
n`m by (−1)`+m+1 1

`−1
(
`−1
m

)(
`−1
m−1

)
, we get equality. We rewrite each 1

`−1
(
`−1
m

)(
`−1
m−1

)
as (2−`)m−1(1−`)m−1

(2)m−1(m−1)! . Here (x)m−1 denotes, as is standard in the context of hypergeo-
metric series, the rising factorial x(x+ 1) · · · (x+m− 2). We also rewrite

(−2i+1
j−k

)
as

(−1)k−1(−2i+1
j−1

) (1−j)k−1
(−2i−j+3)k−1

and
(−2j+1
i−k

)
as (−1)k−1(−2j+1

i−1
) (1−i)k−1

(−2j−i+3)k−1
. Thus the

identity we must check is

(32) (−1)i
(
−2i+ 1
j − 1

) j∑
k=1

(2− i)k−1(1− i)k−1(1− j)k−1

(2)k−1(−2i− j + 3)k−1(k − 1)!

= (−1)j
(
−2j + 1
i− 1

) i∑
k=1

(2− j)k−1(1− j)k−1(1− i)k−1

(2)k−1(−2j − i+ 3)k−1(k − 1)! .

In standard hypergeometric series notation, this is

(33) (−1)i
(
−2i+ 1
j − 1

)
3F2

[
2−i 1−i 1−j

2 −2i−j+3 ; 1
]

= (−1)j
(
−2j + 1
i− 1

)
3F2

[
2−j 1−j 1−i

2 −2j−i+3 ; 1
]
.

This is verified by applying Saalschütz’ Theorem to both sides and making some
simple manipulations to simplify both sides to (−1)i+j−1 1

i+j
(
i+j−2
j−1

)(
i+j
j

)
. �

Remark 3.14. We thank Gregg Musiker for pointing out work of Çanakçı and Schif-
fler [4], which provides a different way of computing the limit in Theorem 3.10. Rewrit-
ten in our notation (including switching the roles of x1 and x2), [4, Corollary 7.6(b)]
says

(34)
[

lim
i→−∞

xi−1

xi

]
y1=y2=1

=
[
x2 + x0 +

√
(x2 − x0)2 + 4

2x1

]
y1=y2=1

.
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We can put back the coefficients y1 and y2: Each xi+1
xi

has g-vector −ρ1 + ρ2, so we
insert coefficients so as to make the right side homogeneous with that g-vector. Using
the fact that the g-vector of y1 is 2ρ2 and the g-vector of x0 is −ρ2, we see that

(35) lim
i→−∞

xi−1

xi
=
x2 + y1x0 +

√
(x2 − y1x0)2 + 4y1

2x1
.

Now, using the fact that y1 = ŷ1x
2
2 and x0 = 1+ŷ2

x2
and then multiplying both sides

by x1x
−1
2 , we see that limi→−∞

Fi−1
Fi

equals the right side of (24).

Remark 3.15. We thank an anonymous referee for pointing out the relationship be-
tween N (ŷ1, ŷ2) and the theta function ϑ−ρ1+ρ2 , leading to yet another way to com-
pute N (ŷ1, ŷ2). We sketch the argument here. In Section 2.3, we quoted the definition
of theta functions ϑλ in terms of a generic point p in the dominant chamber D. As
mentioned, ϑλ does not depend on the choice of p as long as it is generic and in D.
More generally, the definition given there applies to define ϑλ,p for any point p not in
the support of the scattering diagram. Taking λ = −ρ1 +ρ2 and taking p “very close”
to the limiting ray, one can convince oneself that there are only two broken lines and
that ϑλ,p = x−1

1 x2(1 + ŷ1ŷ2). The result of [5, Section 4] mentioned in Section 2.3
says that for fixed λ, the theta functions for different choices of p are related by path-
ordered products. (See also [9, Theorem 3.5].) One can use that result to compute
ϑλ = p∞(x−1

1 x2(1 + ŷ1ŷ2)). The latter is equal to x−1
1 x2

(
N (ŷ1, ŷ2) + ŷ1ŷ2

N (ŷ1,ŷ2)
)
. By

putting principal coefficients into the known expression for ϑλ (e.g. [9, Example 3.10]
or [6, Example 3.8]), we obtain ϑλ = x−1

1 x2(1 + ŷ1 + ŷ1ŷ2). Combining these expres-
sions for ϑλ, we have a functional equation for N (ŷ1, ŷ2) whose solution is (24). One
part of filling in the details of this sketch is to make precise the notion of choosing p
“very close” to the limiting ray. This requires a limiting construction that propagates
through the whole argument.

3.4. Some theta functions in rank 2. This section is an extended example il-
lustrating the simple-minded approach to computing theta functions in transposed
cluster scattering diagrams of rank 2 with principal coefficients. Example 3.20 il-
lustrates in particular how roots and co-roots interact in the construction. We only
compute some of the theta functions, but all of the theta functions are computed in [6]
by a very different approach, namely showing that they coincide with the greedy basis
constructed in [13].

We continue to take B = [ 0 b
a 0 ] with a < 0 and b > 0. We also continue to place

ρ1 to point to the right of the plane and ρ2 to point up both with the same length
in the page. We saw in Section 3.1 (in the infinite case ab 6 −4) that ScatT (B) has
walls given by the coordinate lines and additionally has walls (which here we will call
diagonal walls) contained in the second quadrant. The same is true when we allow
ab > −4, except that there are no diagonal walls when a = b = 0.

For brevity, we will say that a broken line scatters on the walls containing its points
of nonlinearity.

The first, third, and fourth quadrants are cones of gFan(B), so Theorem 2.5 de-
scribes theta functions for vectors m1ρ1 + m2ρ2 with m1 > 0 and/or m2 6 0. (If we
allow a = b = 0, then the second quadrant is also a cone of gFan(B), so we have
taken a < 0 and b > 0 here.) These theta functions are also easily computed directly.
We will focus on ϑm1ρ1+m2ρ2 with m1 < 0 and m2 > 0.

We begin with two families of cases where we don’t have to think carefully about
roots and co-roots. The first family arises from a bound on m1 with respect to b. The
notation [x]+ means max(x, 0).
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Figure 4. Computing ϑ−3ρ1+2ρ2 for a = −1 and b = 3

Proposition 3.16. If −b 6 m1 6 0 and m2 > 0, then

ϑm1ρ1+m2ρ2 =
−m1∑
i=0

(
−m1

i

)
yi1x

m1
1 xm2+ai

2 (1 + y2x
b
1)[−m2−ai]+

=
−m1∑
i=0

(
−m1

i

)
yi1x

[−m2−ai]+
0 xm1

1 x
[m2+ai]+
2 ,

where x0 = 1+y2x
b
1

x2
is the cluster variable obtained by exchanging x2 from the cluster

{x1, x2}.

Proof. Every diagonal wall, as well as the horizontal wall, is orthogonal to a root
with a positive α2-coordinate. Consider a broken line γ with initial monomial xm1

1 xm2
2

that scatters first on a diagonal wall or on the horizontal wall. This scattering will
change the monomial to c·ŷn1

1 ŷn2
2 xm1

1 xm2
2 = c·yn1

1 yn2
2 xm1+bn2

1 xm2+an1
2 for nonnegative

integers c and n1 and positive integer n2. Since −b 6 m1 6 0 and b > 0, we have
m1 + bn2 > 0, so after scattering, the broken line moves to the left, and thus never
reaches the first quadrant. We see that γ must either not scatter at all or must
scatter first on the vertical wall. Summing all of these possibilities, we obtain terms
xm1

1 xm2
2 (1 + y1x

a
2)−m1 =

∑−m1
i=0

(−m1
i

)
yi1x

m1
1 xm2+ai

2 . Each term represents a segment
in a broken line, which can scatter on the horizontal line before reaching p if and only if
its slope is positive, or in other wordsm2+ai < 0. In this case (and also whenm2+ai =
0), the term

(−m1
i

)
yi1x

m1
1 xm2+ai

2 becomes terms
(−m1

i

)
yi1x

m1
1 xm2+ai

2 (1 + y2x
b
1)−m2−ai,

and otherwise the term is unchanged. One easily convinces oneself that all of these
sequences of scatterings can indeed be achieved by varying the line containing the
initial infinite segment. We see that ϑm1ρ1+m2ρ2 =

∑−m1
i=0

(−m1
i

)
yi1x

m1
1 xm2+ai

2 (1 +
y2x

b
1)[−m2−ai]+ . �

Example 3.17. Figure 4 illustrates Proposition 3.16 in the case where a = −1,
b = 3, m1 = −3 and m2 = 2. Walls are shown in black, but we have left out
diagonal walls, which are irrelevant because −b 6 m1 6 0. Broken lines γ are
shown in red, together with the monomials cγxλγyβγ . Scattering on the vertical
wall bends the broken line in four different directions. Three of the directions are
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downwards or horizontal, precluding any interaction with the horizontal wall. One
direction allows scattering (or not) on the horizontal wall. We compute ϑ−3ρ1+2ρ2 =
x−3

1 x2
2 + 3y1x

−3
1 x2 + 3y2

1x
−3
1 + y3

1x
−3
1 x−1

2 + y3
1y2x

−1
2 .

The second family of cases where we don’t need to be careful of roots and co-roots
arises from a bound on m2 with respect to a.

Proposition 3.18. If m1 < −b < 0 and 0 6 m2 < −a, then ϑm1ρ1+m2ρ2 equals

xm1
1 xm2

2 +
−m1∑
i=1

m2∑
j=0

(
−m1 − bj

i

)(
m2

j

)
yi1y

j
2x
m1+bj
1 xm2+ai

2 (1 + y2x
b
1)−m2−ai

= xm1
1 xm2

2 +
−m1∑
i=1

m2∑
j=0

(
−m1 − bj

i

)(
m2

j

)
yi1y

j
2x
−m2−ai
0 xm1+bj

1 ,

where x0 = 1+y2x
b
1

x2
as before.

Proof. We exploit the freedom we have to choose the endpoint p of the broken lines
used to compute ϑm1ρ1+m2ρ2 . Specifically, we take p to be a point in the first quadrant
with larger ρ1-coordinate than ρ2-coordinate. We claim that no broken line with initial
monomial xm1

1 xm2
2 scatters first on a diagonal wall and then ends at p. If the broken

line scatters on a diagonal wall, then the monomial is changed to c · ŷn1
1 ŷn2

2 xm1
1 xm2

2 =
c · yn1

1 yn2
2 xm1+bn2

1 xm2+an1
2 , this time for nonnegative integers c and n2 and positive

integer n1. Since 0 6 m2 < −a, we have m2 + an1 < 0, so the slope of the new
segment is at least 1. Since the scattering occurs in the second quadrant and since all
further scatterings only decrease the exponent on x2, the broken line will never reach
p, which was chosen to have larger ρ1-coordinate than ρ2-coordinate. We conclude
that each broken line contributing to ϑm1ρ1+m2ρ2 scatters on the horizontal wall (or
not), then from the vertical wall (or not), and then from the horizontal wall (or not).

The monomials that arise from scattering (or not) on the horizontal wall are
xm1

1 xm2
2 (1 + ŷ2)m2 = xm1

1 xm2
2 (1 + y2x

b
1)m2 , but the corresponding broken lines will

never reach the first quadrant unless the exponent on x1 is negative. Thus the relevant
terms are

min(m2,b−1−m1
b c)∑

j=0

(
m2

j

)
yj2x

m1+bj
1 xm2

2 .

When the broken lines associated to these terms scatter on the vertical wall, we obtain
terms

min(m2,b−1−m1
b c)∑

j=0

(
m2

j

)
yj2x

m1+bj
1 xm2

2 (1 + y1x
a
2)−m1−bj

=
min(m2,b−1−m1

b c)∑
j=0

−m1−bj∑
i=0

(
m2

j

)(
−m1 − bj

i

)
yj2y

i
1x
m1+bj
1 xm2+ai

2 .

The corresponding broken lines that scatter on the vertical wall at a point below
the horizontal wall will never reach the first quadrant unless the exponent on x2 is
negative. This includes all broken lines that scattered first on the horizontal wall
(i.e. all those corresponding to j > 1) and also all those that first scattered on the
vertical wall (i.e. j = 0) and bent upwards. (Since p is on the right, those that bend
upwards on the vertical wall cannot reach p unless they scatter on the vertical wall at
a point below the horizontal wall.) By the hypothesis on m2, the broken line bends
upwards at the vertical wall if and only if i > 1. When i > 1, each broken line can
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Figure 5. Computing ϑ−2ρ1+3ρ2 for a = −4 and b = 1

(for the proper choice of a line containing the initial infinite segment) scatter on the
horizontal wall and reach p. Thus ϑm1ρ1+m2ρ2 has terms

min(m2,b−1−m1
b c)∑

j=0

−m1−bj∑
i=1

(
m2

j

)(
−m1 − bj

i

)
yj2y

i
1x
m1+bj
1 xm2+ai

2 (1 + y2x
b
1)−m2−ai.

Since 0 6 m2 < −a, a broken line cannot scatter first on the vertical wall then
continue downward or horizontally. The only remaining possibility is that the broken
line never scatters, and this gives a term xm1

1 xm2
2 . Since i is always positive, the factor(−m1−bj

i

)
is zero unless −m1−bj is also positive, so we can replace min(m2, b−1−m1

b c)
with m2 in the top limit of the outer sum. Since

(−m1−bi
i

)
= 0 when i > −m1 − bj,

we can replace −m1 − bj with −m1 in the top limit of the inner sum. �

Example 3.19. Figure 5 illustrates Proposition 3.18 in the case where a = −4, b = 1,
m1 = −2 and m2 = 3. Walls are again shown in black with diagonal walls again
left out because they are irrelevant. The two broken lines that scatter first on the
horizontal wall are blue and dotted. All other broken lines are shown in red. We show
the monomials cγxλγyβγ in the appropriate colors. The six red broken lines and the
blue dotted line that exit the bottom of the picture have all scattered (outside of the
frame of the picture) on the vertical wall.

There is only one direction that broken lines can bend if they first scatter on the
horizontal wall, and then they must scatter on the vertical wall, with only one possible
direction. They may then scatter, or not, on the horizontal wall.

Broken lines that first scatter on the vertical wall can do so in two different direc-
tions. The broken lines can then scatter or not on the horizontal wall. We compute
ϑ−2ρ1+3ρ2 to be
x−2

1 x3
2 + 3y1y2x

−1
1 x−1

2 (1 + y2x1) + 2y1x
−2
1 x−1

2 (1 + y2x1) + y2
1x
−2
1 x−5

2 (1 + y2x1)5.

Proposition 3.16 is enough to compute the cluster variables in all of the rank-2
finite-type cases except for a single cluster variable in the case where a = −3 and b = 1,
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Figure 6. Computing ϑ−2ρ1+3ρ2 for a = −3 and b = 1

namely ϑ−2ρ1+3ρ2 . This case also falls outside of the hypotheses of Proposition 3.18, so
we work it out next as an example. When neither Proposition 3.16 nor Proposition 3.18
apply, general statements become significantly harder, because we need to consider
scattering on diagonal walls, but (outside of finite and affine type), we don’t know all
of the functions attached to the diagonal walls.

Example 3.20. We compute ϑ−2ρ1+3ρ2 when a = −3 and b = 1. The scattering
diagram is shown in Figure 6. We again choose p to be a point in the first quadrant
whose ρ1-coordinate is larger than its ρ2-coordinate. We consider first broken lines
that do not scatter on diagonal walls. These broken lines are shown in red in Figure 6.
If a broken line scatters first on the horizontal wall, it can only bend one direction
(because it must continue to the right), and the corresponding monomial becomes
3y2x

−1
1 x3

2. It must then scatter on the vertical wall at a point below the horizontal
wall, becoming a term of 3y2x

−1
1 x3

2(1 + y1x
−3
2 ). However, the corresponding segments

are horizontal or downwards, and thus never reach the first quadrant. Arguing as in
Proposition 3.16, we obtain terms x−2

1 x3
2 + 2y1x

−2
1 + y2

1x
−2
1 x−3

2 (1 + y2x1)3.
We next consider broken lines that scatter on diagonal walls. The functions on the

diagonal walls are
1 + ŷ1ŷ2 = 1 + y1y2x1x

−3
2

1 + ŷ2
1 ŷ

3
2 = 1 + y1y2x

3
1x
−6
2

1 + ŷ1ŷ
2
2 = 1 + y1y2x

2
1x
−3
2

1 + ŷ1ŷ
3
2 = 1 + y1y2x

3
1x
−3
2

There is only one of these walls on which a broken line can scatter and still move to
the right, namely the wall whose function is 1 + ŷ1ŷ2 = 1 + y1y2x1x

−3
2 .

This is the point in the calculation where one might make an error if one is not
careful about roots and co-roots. The wall with function 1 + ŷ1ŷ2 is orthogonal to
the root α1 + α2. As in Section 2.1, we compute α1 = α∨1 and α2 = 1

3α
∨
2 , so

the primitive co-root orthogonal to the wall is 3α∨1 + α∨2 . (That is why, as shown
in Figure 6, the wall consists of nonnegative multiples of −ρ1 + 3ρ2.) We compute
〈2ρ1 − 3ρ2, 3α∨1 + α∨2 〉 = 6− 3 = 3, so to scatter on this wall, the monomial x−2

1 x3
2 is

multiplied by a nontrivial term in (1 + ŷ1ŷ2)3 = (1 + y1y2x1x
−3
2 )3. The only possible
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nontrivial term is 3y1y2x1x
−3
2 , because every other nontrivial term will give a segment

with slope > 1, and the broken line will never reach p, whose ρ1-coordinate is larger
than its ρ2-coordinate. Thus, the unique broken line that scatters on a diagonal wall
travels horizontally to p and contributes 3y1y2x

−1
1 to ϑ−2ρ1+3ρ2 . This broken line is

shown blue and dotted in Figure 6. We have computed
ϑ−2ρ1+3ρ2 = x−2

1 x3
2 + 2y1x

−2
1 + y2

1x
−2
1 x−3

2 (1 + y2x1)3 + 3y1y2x
−1
1

= x−2
1 x3

2 + 2y1x
−2
1 + y2

1x
3
0x
−2
1 + 3y1y2x

−1
1 .

(36)

Remark 3.21. When a < 0, b > 0 and −ab > 4, a theta function ϑm1ρ1+m2ρ2 is a
cluster monomial if and only if m2

m1
does not satisfy the inequalities for p

q given in (8).
When a and/or b is large in absolute value, these inequalities are roughly a < m2

m1
<

1
−b . Under the hypotheses of Proposition 3.16, if −a is large, we can choose m2 large
enough so that the theta function ϑm1ρ1+m2ρ2 is not a cluster monomial. Under the
hypotheses of Proposition 3.18, if b is large, we can choose −m1 large enough so that
ϑm1ρ1+m2ρ2 is not a cluster monomial. In the affine cases, the theta functions that
are not cluster monomials are all contained in a single ray. Proposition 3.16 computes
one or two of these theta functions in each affine case (ϑ−ρ1+ρ2 and ϑ−2ρ1+2ρ2 for
a = −2 and b = 2; ϑ−ρ1+2ρ2 for a = −4 and b = 1; and ϑ−2ρ1+ρ2 and ϑ−4ρ1+2ρ2 for
a = −1 and b = 4). Proposition 3.18 does not compute (in the affine case) any theta
functions that are not cluster monomials.

4. Scattering diagrams of acyclic finite type
When B is acyclic and of finite type, the g-vector fan can be constructed as a Cam-
brian fan. This fan is complete, so it is the full scattering fan ScatFanT (B). In this
section, we review the construction of the Cambrian fan and use elements of the
construction to construct scattering diagrams directly for B of finite acyclic type.
Therefore, cluster monomials, and in particular, cluster variables can be constructed
in terms of broken lines or path-ordered products in the Cambrian scattering diagram.

4.1. Cambrian fans. We quickly review the definition of sortable elements and Cam-
brian fans, skipping over a lot of the combinatorics and geometry behind the definition.
For more details, see for example [21, 26, 27].

We continue the notation and background from Section 2.1. An exchange matrix
B is acyclic if there exists no cycle i0, . . . , i` = i0 of indices such that bik−1,ik > 0
for k = 1, . . . , `. In this case, the sign information in B is encoded in a choice of a
Coxeter element c of W . A Coxeter element is an element of W that can be written
as a product of the simple reflections S, with each simple reflection appearing exactly
once. Thus we specify a Coxeter element by giving a total order on S. The exchange
matrix B determines a Coxeter element by multiplying the elements of S in order so
that si precedes sj whenever bij > 0. There may be more than one way of ordering
S subject to this requirement, but such orders give different expressions for the same
element c. A simple reflection s ∈ S is initial in c if one of these orderings has s first,
or equivalently if s = si and bij > 0 for j = 1, . . . , n. Similarly s is final in c if it
is last in one of these orderings. If s is initial or final in c then scs is also a Coxeter
element. Furthermore, s is initial in c if and only if s is final in scs.

A word for w ∈W is an expression a1 · · · ak for w with ai ∈ S for all i. The length
`(w) of w is the smallest k for which a word a1 · · · ak exists for w, and a reduced word
for w ∈W is a word a1 · · · a`(w) for w.

A reflection of W is an element conjugate to some s ∈ S. Equivalently, t ∈ W is
a reflection if and only if it has an (n − 1)-dimensional fixed space. In this case, the
fixed space is β⊥ for some root β, and this connection defines a bijection between
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reflections t and positive (real) roots βt. An inversion of w ∈W is a reflection t such
that `(tw) < `(w). A reflection t is an inversion of w if and only if D and wD are
on opposite sides of the hyperplane β⊥t , for D as in (1). A cover reflection of w is an
inversion t of w such that there exists s ∈ S with tw = ws. The elements s that appear
in this way are called (right) descents, and the correspondence between descents of w
and cover reflections of w is bijective.

A parabolic subgroup of W is a subgroup WJ generated by some J ⊆ S. For us,
the most important kind of parabolic subgroup is W〈s〉 for s ∈ S and 〈s〉 standing for
S r {s}.

We define the c-sortable elements recursively by declaring that the identity is c-
sortable for any c in any Coxeter group W and by the following two conditions for s
initial in c.

(i) If w has a reduced word beginning with s (or equivalently if `(sw) < `(w)),
then w is c-sortable if and only if sw is scs-sortable.

(ii) If w does not have a reduced word beginning with s (or equivalently if `(sw) >
`(w)), then w is c-sortable if and only if w is in W〈s〉 and w is sc-sortable as
an element of W〈s〉.

These conditions decide the c-sortability of an element w by induction on `(w) and
on n. They make sense in particular because, when s is initial in c, scs is a Coxeter
element of W and sc is a Coxeter element of W〈s〉. The notion of c-sortability is
well-defined in light of the usual non-recursive definition.

For each c-sortable element v, we define a set Cc(v) ⊂ Φ with |Cc(v)| = n. This
can be defined in terms of “skips” in a special “c-sorting word” for v, as explained
in [27, Section 5], but here we give the simple recursive definition: If v is the identity,
then Cc(v) = {α1, . . . , αn} (the set of simple roots), and for s = si initial in c,

(37) Cc(v) =
{
sCscs(sv) if `(sv) < `(v), or
Csc(v) ∪ {αi} if `(sv) > `(v).

Furthermore, define

(38) Conec(v) =
⋂

β∈Cc(v)
{p ∈ V ∗ : 〈p, β〉 > 0}.

The cone Conec(v) contains the cone vD for D as in (1), as an immediate consequence
of [27, Theorem 6.3]. In particular, Conec(v) is full-dimensional. It is also simplicial.
No hyperplane α⊥i intersects the interior of any cone Conec(v). (This is the concate-
nation of [29, Proposition 4.26] with [29, Theorem 5.12] or, in the finite-type case, is
a special case of [27, Proposition 9.5].)

For each J ⊆ S, let VJ be the subspace of V spanned by {αi : si ∈ J} and identify
(VJ)∗ in the natural way with the subspace of V ∗ spanned by {ρi : si ∈ J}. Then (37)
implies the following recursion for s = si initial in c.

(39) Conec(v) =
{
sConescs(sv) if `(sv) < `(v), or
SpanR>0

(Conesc(v) ∪ {ρi}) if `(sv) > `(v).

Here Conesc(v) lives in the subspace (V〈s〉)∗ of V ∗. (This subspace is α⊥i for s = si.)
The notation SpanR>0

means nonnegative linear span.
The c-Cambrian fan Fc is the collection consisting of the cones Conec(v) and

their faces, for all c-sortable elements v. The following theorem is the concatenation
of [29, Corollary 5.15] with Theorem 2.5. Versions of [29, Corollary 5.15] appear as [27,
Theorem 9.1], [33, Theorem 1.10] (see [33, Remark 6.1]), and by concatenating results
of [19, 22].
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ŷ1 ŷ2

1 + ŷ1
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B =
[

0 1
−3 0

]
A =

[ 2 −1
−3 2

]
c = s1s2
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Figure 7. Cambrian scattering diagrams with n = 2

Theorem 4.1. If B is acyclic with associated Coxeter element c, then Fc is a simpli-
cial fan, and in particular a subfan of gFan(B).

4.2. Cambrian scattering diagrams. Continuing the notation from above, we
now use the sortable/Cambrian machinery to directly construct a (transposed) scat-
tering diagram equivalent to ScatFanT (B).

The walls of the scattering diagram will be the codimension-1 faces of the c-
Cambrian fan. Each such face is the intersection of two maximal faces Conec(v) and
Conec(v′), and thus is contained in β⊥ for some root with β ∈ Cc(v) and −β ∈ Cc(v′).
Given a c-sortable element v, by [27, Proposition 5.2], the set of negative roots in Cc(v)
equals {−βt : t ∈ cov(v)}, where cov(v) is the set of cover reflections of v. Thus we can
list each codimension-1 face of the c-Cambrian fan exactly once by running through
all c-sortable elements v and all cover reflections of each v. Accordingly, we define the
c-Cambrian scattering diagram to be the set
(40) CambScat(A, c) =

{
(Conec(v) ∩ β⊥t , 1 + ŷβt) : t ∈ cov(v)

}
.

The notation emphasizes that the information in B is equivalent to the information
in the Cartan matrix A and Coxeter element c. This is a scattering diagram in the
transposed sense of Section 2.2.

Example 4.2. Figure 7 shows CambScat(A, c) for all cases with n = 2, up to Propo-
sition 2.4 and the symmetry of swapping the indices 1 and 2. For the associated root
systems, see Figure 1.

Our goal is to prove the following theorem.

Theorem 4.3. If B is acyclic of finite type with associated Cartan matrix A and
Coxeter element c, then ScatT (B) is equivalent to CambScat(A, c).
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Since CambScat(A, c) is a finite collection of walls, it is a scattering diagram. Since
none of the maximal cones of Fc intersect any hyperplane α⊥i in their interior, and
since Fc is a finite, complete fan, each α⊥i is the union of finitely many walls of
CambScat(A, c), each with function 1 + ŷi. Up to equivalence, these walls can be
replaced by a single wall (α⊥i , 1 + ŷi). To complete the proof of Theorem 4.3, we
show that every other wall is outgoing and that CambScat(A, c) is consistent, in
Propositions 4.6 and 4.7, below.

First, we need some more background on the form ω in the acyclic case. In this
case, we write ωc for ω, where c is the Coxeter element associated to B. The point
is that we can fix the Cartan matrix A while changing c, as in the following lemma,
which is [27, Lemma 3.8].

Lemma 4.4. If s is initial in c, then ωc(φ∨, β) = ωscs(sφ∨, sβ) for φ∨ ∈ Q∨ and
β ∈ Q.

We rewrite Lemma 4.4 in terms of the dual action on V ∗ as follows.

Lemma 4.5. If s is initial in c, then for any β ∈ Q, the action of s sends ωc( · , β) to
ωscs( · , sβ).

We now prove part of Theorem 4.3.

Proposition 4.6. Every wall of CambScat(A, c) not contained in some α⊥i is outgo-
ing.

This proposition is closely related to the notion of c-alignment in [21, Theorem 4.1]
(see also [27, Theorem 4.3]) but here, we give a simple recursive proof.

Proof. Each wall is (d, fd) with d = Conec(v) ∩ β⊥t for t ∈ cov(v) and thus −βt ∈
Cc(v), but there is another cone Conec(v′) sharing that wall as a facet and having
βt ∈ Cc(v′). Thus it is enough to show that for every c-sortable v and every positive
root β ∈ Cc(v) r {α1, . . . , αn}, the vector ωc( · , β) is not in Conec(v). We argue by
induction on `(v) and on n.

Suppose v is c-sortable and β is a positive root in Cc(v) r {α1, . . . , αn}. Let si be
initial in c. First consider the case where `(siv) < `(v). If siβ is not a positive root,
then β = αi, because ±αi are the only roots whose sign changes under the action
of si. This is ruled out by hypothesis, so siβ is positive. We have siβ ∈ Csicsi(siv)
by (37), and we will show that ωsicsi( · , siβ) 6∈ Conesicsi(siv).

If siβ 6∈ {α1, . . . , αn}, then by induction on `(v), the vector ωsicsi( · , siβ) is not
in Conesicsi(siv). If on the other hand siβ = αj for some j, then i 6= j because
otherwise β = −αi. We have ωsicsi( · , siβ) =

∑n
k=1 b

′
kjρk, where B′ = [b′ij ] is the

exchange matrix defined by A and sicsi. The Cartan matrix entry aij is nonzero,
because otherwise β = siαj = αj . Since si is final in sicsi, we have b′ij < 0, and
we see that ωsicsi(α∨i , siβ) < 0. But `(siv) < `(v), so si is an inversion of v, so
that α⊥i separates D from vD. Therefore α⊥i does not separate D from sivD. Since
sivD ⊆ Conesicsi(siv), which does not cross α⊥i , we see that Conesicsi(siv) is con-
tained in {p ∈ V ∗ : 〈p, α∨i 〉 > 0}. However, we have calculated that ωsicsi( · , siβ) 6∈
{p ∈ V ∗ : 〈p, α∨i 〉 > 0}. Thus in this case also ωsicsi( · , siβ) 6∈ Conesicsi(siv).

In either case, Conec(v) = si Conesicsi(siv) by (39). But ωc( · , β) is equal to
siωsicsi( · , siβ) by Lemma 4.5, so ωc( · , β) is not in Conec(v).

It remains to check the case where `(siv) > `(v). In this case, Cc(v) = Csic(v) ∪
{αi}, so we need only consider positive roots β ∈ Csic(v)r{α1, . . . , αn}. By induction
on n, the vector ωsic( · , β) ∈ (V〈si〉)∗ is not in Conesic(v). Therefore, there exists φ ∈
Csic(v) such that ωsic(φ∨, β) < 0. In particular, φ is in the span of {α1, . . . , αn}r{αi}.
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Since ωc( · , β) and ωsc( · , β) differ by a multiple of ρi, we see that ωc(φ∨, β) < 0, so
that ωc( · , β) 6∈ Conec(v). �

The proof of the last piece of Theorem 4.3 uses a result [27, Theorem 9.8] on the
local structure of the c-Cambrian fan Fc to reduce to the case where n = 2. We now
explain the case of [27, Theorem 9.8] that we need.

Suppose G is a face of Fc of codimension 2. If p is in the interior of D and q is in
the relative interior of G, then as ε > 0 approaches 0, the vector q− εp remains in the
interior of some maximal cone Conec(v) of Fc. We call v the c-sortable element above
G. The cone G is a face of Conec(v), so G = Conec(v) ∩ β⊥1 ∩ β⊥2 for β1, β2 ∈ Cc(v).
By our choice of v, both β1 and β2 are negative, so β1 = −βt1 and β2 = −βt2
for t1, t2 ∈ cov(v). Let a1 and a2 be the elements of S such that t1 = va1v

−1 and
t2 = va2v

−1. Write σ1 and σ2 for the fundamental weights dual to a1 and a2.
The cone vD is contained in Conec(v), and since t1, t2 ∈ cov(v) and G = Conec(v)∩

β⊥1 ∩ β⊥2 , the intersection vD ∩ G is a codimension-2 face of vD. Taking q in the
relative interior of vD ∩ G and p as before, as ε > 0 approaches 0, the vector q +
εp remains in the interior of some cone wD for w ∈ W . We call w the element
below G. We may assume that we numbered β1 and β2 (and thus a1 and a2) so
that ωc(βwa1w−1 , βwa2w−1) > 0. Note that {βwa1w−1 , βwa2w−1} = {β1, β2}, but it is
possible that βwa1w−1 = β2.

Given any cone F and any p ∈ F , the linearization Linp(F ) of F at x is the set of
vectors q ∈ V ∗ such that p + εq is in F for sufficiently small ε > 0. For any cone G
in Fc, we fix p in the relative interior of G and define the star of G in Fc to be the
collection StarG(Fc) consisting of cones Linp(F ) such that F is a cone in Fc containing
G. This collection is independent of the choice of p and is a fan in V ∗ (and indeed
a complete fan, since we are in the finite-type case where Fc is complete). In the
special case where G has codimension 2 and continuing the notation from above, [27,
Theorem 9.8] says that

(41) StarG(Fc) = w
(
Fa1a2 ⊕ SpanR({ρ1, . . . , ρn}r {σ1, σ2})

)
.

Here a1a2 is a Coxeter element of the parabolic subgroup W{a1,a2} and Fa1a2 is
the a1a2-Cambrian fan constructed in (V{a1,a2})∗, which we have identified with the
subspace of V ∗ spanned by {σ1, σ2}. The fan Fa1a2 ⊕ SpanR({ρ1, . . . , ρn} r {σ1, σ2}
is the collection of cones F ⊕ SpanR({ρ1, . . . , ρn}r {σ1, σ2}) such that F is a cone in
Fa1a2 .

Proposition 4.7. CambScat(A, c) is consistent.

Proof. For the purpose of defining path-ordered products, generic paths in V ∗ r
Supp(CambScat(A, c)) are indistinguishable from sequences F0, . . . , Fk of maximal
cones in Fc with Fi−1 and Fi adjacent for i = 1, . . . , k. We write pF0,...,Fk;c for the path-
ordered product pγ,CambScat(A,c) such that γ is a generic path starting in the interior
of F0, passing in succession to the interiors of the Fi, and finally ending in the interior
of Fk. Consistency of CambScat(A, c) means showing that pF0,...,Fk;c is the identity
whenever F0 = Fk. Checking this is easily reduced to the case where F0, . . . , Fk visits
exactly once each maximal cone that contains some fixed codimension-2 cone G.

We continue the notation that was used above to define the c-sortable element
above G, the element below G, etc. Since every wall crossed by F0, . . . , Fk contains
G, the path-ordered product pF0,...,Fk;c acts as the identity on xλ when λ is in the
linear span of G. The span of {wσ1, wσ2} is complementary to the linear span of G,
so it is enough to check that pF0,...,Fk;c acts as the identity on xwσ1 and xwσ2 .
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We write f1, . . . , fk for the sequence of wall functions encountered in evaluating
pF0,...,Fk;c. Let f ′1, . . . , f ′` be the sequence of wall functions encountered along a cy-
cle about the origin in CambScat(A′, a1a2), where A′ is the restriction of A to the
rows and columns of a1 and a2. Then (41) implies that ` = k and (when we choose
the right starting point for the cycle in CambScat(A′, a1a2)) that if f ′i = 1 + ŷβ

then fi = 1 + ŷwβ . We can check consistency in each rank-2 case (shown in Fig-
ure 7) or compare with results of [6] to see that CambScat(A′, a1a2) is consistent.
In particular, the path-ordered product for the cycle in CambScat(A′, a1a2) fixes
both xσ1 and xσ2 . The path-ordered product on the corresponding cycle F ′0, . . . , F ′k
in CambScat(A, c) differs only by replacing the functions ŷ for A′ with the corre-
sponding functions ŷ for A. The effect is to multiply each ŷi by a Laurent monomial
xλ with λ ∈ SpanZ({ρ1, . . . , ρn} r {σ1, σ2}), so the replacement commutes with the
wall-crossing automorphisms encountered on this cycle. We see that pF ′0,...,F ′k;c acts
as the identity. Now, by (41), using Proposition 2.2 to avoid worrying about values of
ωc, and keeping in mind the definition of the dual action, we see that pF0,...,Fk;c acts
as the identity as well. �

This completes the proof of Theorem 4.3

Remark 4.8. When B is acyclic and of finite type, the c-Cambrian fan coincides
with gFan(B). (This was conjectured and partially proved in [26, Section 10] and
proved first in [33] and then as [29, Corollary 5.16].) By Theorem 2.5 (which follows
from results of [9]), in finite type, the transposed scattering diagram coincides with
gFan(B). In particular, the c-Cambrian fan and the transposed scattering diagram
coincide, and Theorem 4.3 follows immediately by Theorem 2.8. Here we have chosen
to make the connection between Cambrian fans and scattering diagrams directly,
rather than connecting them indirectly via g-vector fans.

However, using the g-vector fan may be useful in not-necessarily-acyclic finite type.
In that setting as well, if one constructs gFan(B), then one obtains the transposed
cluster scattering diagram easily by putting functions on the codimension-1 faces
according to Theorem 2.8. For example, the main result of [28] is a construction of
the g-vector fan for the oriented cycle (a non-acyclic exchange matrix of finite type
D) using a root system of affine type A. In that case, putting the function 1 + ŷβ on
each codimension-1 face of the fan normal to the root β yields a scattering diagram.

Alternately, still in not-necessarily-acyclic finite type, if one constructs what one
thinks is the g-vector fan, then one can prove that it is indeed the g-vector fan by
putting functions on the codimension-1 faces according to Theorem 2.8, then showing
consistency, checking that each α⊥i is covered by codimension-1 faces, and checking
that all other walls are outgoing. (Following this idea in acyclic finite type, our proof
of Theorem 4.3 amounts to a new proof that the c-Cambrian fan is the g-vector fan
in finite type.)

Remark 4.9. In light of Theorem 4.3, we can compute cluster variables (or more gen-
erally cluster monomials) in acyclic finite type as explained in Theorems 2.5 and 2.9.
Thus the cluster monomial with g-vector λ (encoded as usual as an element of the
weight lattice) is ϑλ, as defined in Section 2.3. Alternately, this cluster monomial is
pq,p,CambScat(B)(xλ), where p is any point in the interior of D and q is any point in
a maximal cone F of gFan(B) with λ ∈ F . We briefly discuss the computation of
pq,p,CambScat(B)(xλ). The discussion requires some background on the weak order and
c-sortable elements which can be found in any of the references on sortable elements
or Cambrian fans already mentioned.

We compute pq,p,CambScat(B)(xλ) using a sequence of maximal cones of Fc, as in the
proof of Theorem 4.3. Choose some c-sortable element v0 such that λ ∈ Conec(v0).

Algebraic Combinatorics, Vol. 3 #3 (2020) 633



Nathan Reading

We want a sequence v0, . . . , vk such that Conec(vi−1) and Conec(vi) are adjacent for
each i = 1, . . . , k and such that Conec(vk) = D, or equivalently vk is the identity.
Ideally, we would choose v0 and the rest of the sequence to minimize k. However, it
is easier to choose v0 to be the unique minimal (in weak order) c-sortable element v0
such that λ ∈ Conec(v0), require that `(vi) < `(vi−1) for all i and then minimize k. A
heuristic to make k small is as follows: For each vi−1, by [27, Proposition 3.11], there
exists t ∈ cov(vi−1) such that ωc(βt, βt′) > 0 for all t′ ∈ cov(vi−1). Define vi to be the
unique maximal c-sortable element that is below tvi−1 in the weak order. Now [27,
Proposition 3.11] suggests that we are minimizing k, subject to `(vi) < `(vi−1) for
all i.

4.3. Shards. Our construction of CambScat(A, c) made each codimension-1 face of
the c-Cambrian fan into a wall. Typically, there is more than one codimension-1
face orthogonal to each root, so one expects that one could combine some of the
codimension-1 faces into a smaller number of walls. In this section, we show how to
construct a scattering diagram equivalent to CambScat(A, c), and thus equivalent to
ScatT (B), with exactly one wall orthogonal to each root.

The walls in this scattering diagrams will be shards, or, more specifically, the shards
not removed by the c-Cambrian congruence Θc. Shards play a role in the combina-
torics, geometry, and lattice theory of the weak order on a finite Coxeter group, and
play a key role in papers including [1, 2, 14, 16, 17, 18, 22, 23]. The c-Cambrian con-
gruence is the key player in a lattice-theoretic approach [20, 22] to sortable elements
and Cambrian fans. Here, we will not go into details about shards and c-Cambrian
congruences. Rather, we simply quote results that make the connection.

First, by definition (see for example [23, Section 3]) shards are codimension-1 closed
convex cones defined by hyperplanes β⊥ for β ∈ Φ. (In [16, 17], the shards were
relatively open, but in later references, closures were taken as part of the definition.)
Second, again by definition, for each hyperplane β⊥, the shards contained in β⊥

exactly cover β⊥ with non-intersecting relative interiors. Third, in each hyperplane
β⊥, the union of all codimension-1 faces of the c-Cambrian fan that are orthogonal
to β is a shard [23, Proposition 8.15]. (Which shard this is depends on c.) We call
this shard “the shard in β⊥ not removed by Θc” for consistency with other references
on shards and Cambrian congruences, but since we are not giving any definitions
about shards and Cambrian congruences, we can safely think of “the shard in β⊥

not removed by Θc” merely as a very long proper name, and refer to it by a shorter
proper name Σc(β).

Combining this information on shards and Cambrian fans with Theorem 4.3, we
have the following corollary, which shows in particular that ScatT (B) is equivalent to
a scattering diagram with exactly one wall orthogonal to each positive root.

Corollary 4.10. If B is acyclic of finite type with associated Cartan matrix A and
Coxeter element c, then ScatT (B) is equivalent to

{
(Σc(β), 1 + ŷβ) : β ∈ Φ+

}
.

Corollary 4.10 makes possible explicit constructions or computations of scattering
diagrams in finite acyclic type. Explicit inequalities defining shards can be derived
using [18, Lemma 3.7]. Details in type A are found in [1, 14].

Each hyperplane β⊥ (for β ∈ Φ+) typically has many shards, and exactly one of
them is a wall in the scattering diagram

{
(Σc(β), 1 + ŷβ) : β ∈ Φ+

}
. If the decompo-

sition of β⊥ into shards is known, we can pick out the shard Σc(β) using the bilinear
form ωc. Call a shard (or a wall) Σ gregarious if the vector −ωc( · , β) is in the relative
interior of Σ. Since the relative interiors of shards in β⊥ are disjoint, there can be at
most one gregarious shard in β⊥.
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Remark 4.11. The term “gregarious” alludes to the notion of an outgoing wall in a
scattering diagram. Recall that a wall (d, fd(ŷβ)) is said to be outgoing if the vector
ωc( · , β) ∈ V ∗ is not in d. Thus in most cases, a wall containing the opposite vector
−ωc( · , β) is particularly outgoing. A gregarious shard Σ can fail to be outgoing, but
this only happens when there are no other shards in β⊥, or in other words when Σ is
all of β⊥. To avoid taking the analogy too far, we will not call the unique gregarious
shard in β⊥ the “lonely” shard.

Proposition 4.12. If B is acyclic of finite type, then for each positive root β, the
shard Σc(β) is the unique gregarious shard in β⊥.

The proof of Proposition 4.12 requires additional background on shards that we
will not give here. The structure of the proof is an induction on length and rank
similar to the proof of Proposition 4.6. However, since we are dealing with shards
instead of walls of the c-Cambrian fan, we need [22, Observation 4.7], which describes
how the decomposition of hyperplanes into shards is affected by the action of s.

We rephrase Proposition 4.12 as a statement about scattering diagrams.

Corollary 4.13. If B is acyclic of finite type, then ScatT (B) can be constructed
entirely of gregarious walls, with exactly one wall in each hyperplane β⊥, where β
runs over all positive roots.

For trivial reasons, the property that every wall is gregarious also holds in rank 2.
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