260,722 research outputs found

    Partial Order Reduction for Security Protocols

    Get PDF
    Security protocols are concurrent processes that communicate using cryptography with the aim of achieving various security properties. Recent work on their formal verification has brought procedures and tools for deciding trace equivalence properties (e.g., anonymity, unlinkability, vote secrecy) for a bounded number of sessions. However, these procedures are based on a naive symbolic exploration of all traces of the considered processes which, unsurprisingly, greatly limits the scalability and practical impact of the verification tools. In this paper, we overcome this difficulty by developing partial order reduction techniques for the verification of security protocols. We provide reduced transition systems that optimally eliminate redundant traces, and which are adequate for model-checking trace equivalence properties of protocols by means of symbolic execution. We have implemented our reductions in the tool Apte, and demonstrated that it achieves the expected speedup on various protocols

    Comment on "Quantum identification schemes with entanglements"

    Full text link
    In a recent paper, [Phys. Rev. A 65, 052326 (2002)], Mihara presented several cryptographic protocols that were claimed to be quantum mechanical in nature. In this comment it is pointed out that these protocols can be described in purely classical terms. Hence, the security of these schemes does not rely on the usage of entanglement or any other quantum mechanical property.Comment: 2 pages, revtex

    Fundamental Finite Key Limits for One-Way Information Reconciliation in Quantum Key Distribution

    Full text link
    The security of quantum key distribution protocols is guaranteed by the laws of quantum mechanics. However, a precise analysis of the security properties requires tools from both classical cryptography and information theory. Here, we employ recent results in non-asymptotic classical information theory to show that one-way information reconciliation imposes fundamental limitations on the amount of secret key that can be extracted in the finite key regime. In particular, we find that an often used approximation for the information leakage during information reconciliation is not generally valid. We propose an improved approximation that takes into account finite key effects and numerically test it against codes for two probability distributions, that we call binary-binary and binary-Gaussian, that typically appear in quantum key distribution protocols

    Multi-protocol Attack: A Survey of Current Research

    Get PDF
    Traditionally, verification methods for security protocols typically assume that the protocols are used in isolation of other protocols (i.e., there is only a single protocol using a network at a given time). However, in practice it is unrealistic to assume that a security protocol runs in isolation in an insecure network. A multi-protocol attack is an attack in which more than one protocol is involved. The verification methods for security protocols that assume a single protocol on a network will fail to verify a protocol�s resistance/vulnerability to multi-protocol attacks. Further, multiple security protocols that are verified to be correct in isolation can be susceptible to multiprotocol attacks when used over the same network. However, the verification of security properties for multiple protocols existing on the same network is difficult since security properties are not compositional. This paper surveys some of the recent approaches and contributions into the verification of security properties in the context of multiple protocols being run in an insecure network and the efforts to prevent multi-protocol attacks

    Solution of a Conjecture: On 2-PCD RFID Distance Bounding Protocols

    Get PDF
    The file attached to this record is the author's final peer reviewed version.It is a popular challenge to design distance bounding protocols that are both secure and efficient. Motivated by this, many distance bounding protocols against relay attacks have been advanced in recent times. Another interesting question is whether these protocols provides the best security. In 2010, Kara et al. analysis the optimal security limits of low-cost distance bounding protocols having bit-wise fast phases and no final signature. As for the classification, they have introduced the notion of k-previous challenge dependent (k-PCD) protocols where each response bit depends on the current and the k previous challenges. They have given the theoretical security bounds for two specific classes k = 0 and 1, but have left the security bounds for k >= 2 as an open problem. In this paper, we aim to answer the open question concerning the security limits of 2-PCD protocols. We describe two generic attacks for mafia and distance frauds that can be applied on any 2-PCD protocols. Then, we provide the optimal trade-off curve between the security levels of mafia and distance frauds that determines the security limits of 2-PCD protocols. Finally our results also prove the conjecture that 2-PCD protocols enhance the security compared to 0-PCD and 1-PCD cases
    corecore