15,680 research outputs found

    Making Existential-Unforgeable Signatures Strongly Unforgeable in the Quantum Random-Oracle Model

    Get PDF
    Strongly unforgeable signature schemes provide a more stringent security guarantee than the standard existential unforgeability. It requires that not only forging a signature on a new message is hard, it is infeasible as well to produce a new signature on a message for which the adversary has seen valid signatures before. Strongly unforgeable signatures are useful both in practice and as a building block in many cryptographic constructions. This work investigates a generic transformation that compiles any existential-unforgeable scheme into a strongly unforgeable one, which was proposed by Teranishi et al. and was proven in the classical random-oracle model. Our main contribution is showing that the transformation also works against quantum adversaries in the quantum random-oracle model. We develop proof techniques such as adaptively programming a quantum random-oracle in a new setting, which could be of independent interest. Applying the transformation to an existential-unforgeable signature scheme due to Cash et al., which can be shown to be quantum-secure assuming certain lattice problems are hard for quantum computers, we get an efficient quantum-secure strongly unforgeable signature scheme in the quantum random-oracle model.Comment: 15 pages, to appear in Proceedings TQC 201

    Formalizing group blind signatures and practical constructions without random oracles

    Get PDF
    Group blind signatures combine anonymity properties of both group signatures and blind signatures and offer privacy for both the message to be signed and the signer. The primitive has been introduced with only informal definitions for its required security properties. In this paper, we offer two main contributions: first, we provide foundations for the primitive and present formal security definitions. In the process, we identify and address some subtle issues which were not considered by previous constructions and (informal) security definitions. Our second main contribution is a generic construction that yields practical schemes with a round-optimal signing protocol and constant-size signatures. Our constructions permit dynamic and concurrent enrollment of new members and satisfy strong security requirements. To the best of our knowledge, our schemes are the first provably secure constructions in the standard model. In addition, we introduce some new building blocks which may be of independent interest. © 2013 Springer-Verlag

    Fully leakage-resilient signatures revisited: Graceful degradation, noisy leakage, and construction in the bounded-retrieval model

    Get PDF
    We construct new leakage-resilient signature schemes. Our schemes remain unforgeable against an adversary leaking arbitrary (yet bounded) information on the entire state of the signer (sometimes known as fully leakage resilience), including the random coin tosses of the signing algorithm. The main feature of our constructions is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible

    Keeping Authorities "Honest or Bust" with Decentralized Witness Cosigning

    Get PDF
    The secret keys of critical network authorities - such as time, name, certificate, and software update services - represent high-value targets for hackers, criminals, and spy agencies wishing to use these keys secretly to compromise other hosts. To protect authorities and their clients proactively from undetected exploits and misuse, we introduce CoSi, a scalable witness cosigning protocol ensuring that every authoritative statement is validated and publicly logged by a diverse group of witnesses before any client will accept it. A statement S collectively signed by W witnesses assures clients that S has been seen, and not immediately found erroneous, by those W observers. Even if S is compromised in a fashion not readily detectable by the witnesses, CoSi still guarantees S's exposure to public scrutiny, forcing secrecy-minded attackers to risk that the compromise will soon be detected by one of the W witnesses. Because clients can verify collective signatures efficiently without communication, CoSi protects clients' privacy, and offers the first transparency mechanism effective against persistent man-in-the-middle attackers who control a victim's Internet access, the authority's secret key, and several witnesses' secret keys. CoSi builds on existing cryptographic multisignature methods, scaling them to support thousands of witnesses via signature aggregation over efficient communication trees. A working prototype demonstrates CoSi in the context of timestamping and logging authorities, enabling groups of over 8,000 distributed witnesses to cosign authoritative statements in under two seconds.Comment: 20 pages, 7 figure

    Short structure-preserving signatures

    Get PDF
    © Springer International Publishing Switzerland 2016. We construct a new structure-preserving signature scheme in the efficient Type-III asymmetric bilinear group setting with signatures shorter than all existing schemes. Our signatures consist of 3 group elements from the first source group and therefore they are shorter than those of existing schemes as existing ones have at least one component in the second source group whose elements bit size is at least double that of their first group counterparts. Besides enjoying short signatures, our scheme is fully re-randomizable which is a useful property for many applications. Our result also consti- tutes a proof that the impossibility of unilateral structure-preserving signatures in the Type-III setting result of Abe et al. (Crypto 2011) does not apply to constructions in which the message space is dual in both source groups. Besides checking the well-formedness of the message, verifying a signature in our scheme requires checking 2 Pairing Product Equations (PPE) and require the evaluation of only 5 pairings in total which matches the best existing scheme and outperforms many other existing ones. We give some examples of how using our scheme instead of existing ones improves the efficiency of some existing cryptographic pro- tocols such as direct anonymous attestation and group signature related constructions
    • …
    corecore