16,562 research outputs found

    On the Scalability of Routing With Policies

    Get PDF

    A QoS-Driven ISP Selection Mechanism for IPv6 Multi-homed Sites

    Get PDF
    A global solution for the provision of QoS in IPng sites must include ISP selection based on per-application requirements. In this article we present a new site-local architecture for QoS-driven ISP selection in multi-homed domains, performed in a per application basis. This architecture proposes the novel use of existent network services, a new type of routing header, and the modification of address selection mechanisms to take into account QoS requirements. This proposal is an evolution of current technology, and therefore precludes the addition of new protocols, enabling fast deployment. The sitelocal scope of the proposed solution results in ISP transparency and thus in ISP independency.This research was supported by the LONG (Laboratories Over the Next Generation Networks) project IST-1999-20393.Publicad

    On Compact Routing for the Internet

    Full text link
    While there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer routing tables of sizes that scale logarithmically with the network size, we demonstrate in this paper that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic routing table size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale ``indefinitely.''Comment: This is a significantly revised, journal version of cs/050802

    Intra-Domain Pathlet Routing

    Full text link
    Internal routing inside an ISP network is the foundation for lots of services that generate revenue from the ISP's customers. A fine-grained control of paths taken by network traffic once it enters the ISP's network is therefore a crucial means to achieve a top-quality offer and, equally important, to enforce SLAs. Many widespread network technologies and approaches (most notably, MPLS) offer limited (e.g., with RSVP-TE), tricky (e.g., with OSPF metrics), or no control on internal routing paths. On the other hand, recent advances in the research community are a good starting point to address this shortcoming, but miss elements that would enable their applicability in an ISP's network. We extend pathlet routing by introducing a new control plane for internal routing that has the following qualities: it is designed to operate in the internal network of an ISP; it enables fine-grained management of network paths with suitable configuration primitives; it is scalable because routing changes are only propagated to the network portion that is affected by the changes; it supports independent configuration of specific network portions without the need to know the configuration of the whole network; it is robust thanks to the adoption of multipath routing; it supports the enforcement of QoS levels; it is independent of the specific data plane used in the ISP's network; it can be incrementally deployed and it can nicely coexist with other control planes. Besides formally introducing the algorithms and messages of our control plane, we propose an experimental validation in the simulation framework OMNeT++ that we use to assess the effectiveness and scalability of our approach.Comment: 13 figures, 1 tabl
    corecore