82,080 research outputs found

    Learning factor graphs in polynomial time and sample complexity

    Get PDF
    We study the computational and sample complexity of parameter and structure learning in graphical models. Our main result shows that the class of factor graphs with bounded degree can be learned in polynomial time and from a polynomial number of training examples, assuming that the data is generated by a network in this class. This result covers both parameter estimation for a known network structure and structure learning. It implies as a corollary that we can learn factor graphs for both Bayesian networks and Markov networks of bounded degree, in polynomial time and sample complexity. Importantly, unlike standard maximum likelihood estimation algorithms, our method does not require inference in the underlying network, and so applies to networks where inference is intractable. We also show that the error of our learned model degrades gracefully when the generating distribution is not a member of the target class of networks. In addition to our main result, we show that the sample complexity of parameter learning in graphical models has an O(1) dependence on the number of variables in the model when using the KL-divergence normalized by the number of variables as the performance criterion

    Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena

    Full text link
    Structural learning of Bayesian Networks (BNs) is a NP-hard problem, which is further complicated by many theoretical issues, such as the I-equivalence among different structures. In this work, we focus on a specific subclass of BNs, named Suppes-Bayes Causal Networks (SBCNs), which include specific structural constraints based on Suppes' probabilistic causation to efficiently model cumulative phenomena. Here we compare the performance, via extensive simulations, of various state-of-the-art search strategies, such as local search techniques and Genetic Algorithms, as well as of distinct regularization methods. The assessment is performed on a large number of simulated datasets from topologies with distinct levels of complexity, various sample size and different rates of errors in the data. Among the main results, we show that the introduction of Suppes' constraints dramatically improve the inference accuracy, by reducing the solution space and providing a temporal ordering on the variables. We also report on trade-offs among different search techniques that can be efficiently employed in distinct experimental settings. This manuscript is an extended version of the paper "Structural Learning of Probabilistic Graphical Models of Cumulative Phenomena" presented at the 2018 International Conference on Computational Science

    Uniform random generation of large acyclic digraphs

    Full text link
    Directed acyclic graphs are the basic representation of the structure underlying Bayesian networks, which represent multivariate probability distributions. In many practical applications, such as the reverse engineering of gene regulatory networks, not only the estimation of model parameters but the reconstruction of the structure itself is of great interest. As well as for the assessment of different structure learning algorithms in simulation studies, a uniform sample from the space of directed acyclic graphs is required to evaluate the prevalence of certain structural features. Here we analyse how to sample acyclic digraphs uniformly at random through recursive enumeration, an approach previously thought too computationally involved. Based on complexity considerations, we discuss in particular how the enumeration directly provides an exact method, which avoids the convergence issues of the alternative Markov chain methods and is actually computationally much faster. The limiting behaviour of the distribution of acyclic digraphs then allows us to sample arbitrarily large graphs. Building on the ideas of recursive enumeration based sampling we also introduce a novel hybrid Markov chain with much faster convergence than current alternatives while still being easy to adapt to various restrictions. Finally we discuss how to include such restrictions in the combinatorial enumeration and the new hybrid Markov chain method for efficient uniform sampling of the corresponding graphs.Comment: 15 pages, 2 figures. To appear in Statistics and Computin
    • …
    corecore