405 research outputs found

    Articulatory and bottleneck features for speaker-independent ASR of dysarthric speech

    Full text link
    The rapid population aging has stimulated the development of assistive devices that provide personalized medical support to the needies suffering from various etiologies. One prominent clinical application is a computer-assisted speech training system which enables personalized speech therapy to patients impaired by communicative disorders in the patient's home environment. Such a system relies on the robust automatic speech recognition (ASR) technology to be able to provide accurate articulation feedback. With the long-term aim of developing off-the-shelf ASR systems that can be incorporated in clinical context without prior speaker information, we compare the ASR performance of speaker-independent bottleneck and articulatory features on dysarthric speech used in conjunction with dedicated neural network-based acoustic models that have been shown to be robust against spectrotemporal deviations. We report ASR performance of these systems on two dysarthric speech datasets of different characteristics to quantify the achieved performance gains. Despite the remaining performance gap between the dysarthric and normal speech, significant improvements have been reported on both datasets using speaker-independent ASR architectures.Comment: to appear in Computer Speech & Language - https://doi.org/10.1016/j.csl.2019.05.002 - arXiv admin note: substantial text overlap with arXiv:1807.1094

    Spoken Word Recognition Using MFCC and Learning Vector Quantization

    Get PDF
    Identification of spoken word(s) can be used to control external device. This research was result word identification in speech using Mel-Frequency Cepstrum Coefficients (MFCC) and Learning Vector Quantization (LVQ). The output of system operated the computer in certain genre song appropriate with the identified word. Identification was divided into three classes contain words such as "Klasik", "Dangdut" and "Pop", which are used to playing three types of accordingly songs. The voice signal is extracted by using MFCC and then identified using LVQ. The training and test set were obtained from six subjects and 10 times trial of the words "Klasik", "Dangdut" and "Pop" separately. Then the recorded sound signal is pre-processed using Histogram Equalization, DC Removal and Pre-emphasize to reduce noise from the sound signal, and then extracted using MFCC. The frequency spectrum generated from MFCC was identified using LVQ after passing through the training process first. Accuracy of the testing results is 92% for identification of training sets while testing new data recorded using different SNR obtained an accuracy of 46%. However, the test results of new data recorded using the same SNR with training data has an accuracy of 75.5%

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Perkeptuaalinen spektrisovitus glottisherätevokoodatussa tilastollisessa parametrisessa puhesynteesissä käyttäen mel-suodinpankkia

    Get PDF
    This thesis presents a novel perceptual spectral matching technique for parametric statistical speech synthesis with glottal vocoding. The proposed method utilizes a perceptual matching criterion based on mel-scale filterbanks. The background section discusses the physiology and modelling of human speech production and perception, necessary for speech synthesis and perceptual spectral matching. Additionally, the working principles of statistical parametric speech synthesis and the baseline glottal source excited vocoder are described. The proposed method is evaluated by comparing it to the baseline method first by an objective measure based on the mel-cepstral distance, and second by a subjective listening test. The novel method was found to give comparable performance to the baseline spectral matching method of the glottal vocoder.Tämä työ esittää uuden perkeptuaalisen spektrisovitustekniikan glottisvokoodattua tilastollista parametristä puhesynteesiä varten. Ehdotettu menetelmä käyttää mel-suodinpankkeihin perustuvaa perkeptuaalista sovituskriteeriä. Työn taustaosuus käsittelee ihmisen puheentuoton ja havaitsemisen fysiologiaa ja mallintamista tilastollisen parametrisen puhesynteesin ja perkeptuaalisen spektrisovituksen näkökulmasta. Lisäksi kuvataan tilastollisen parametrisen puhesynteesin ja perusmuotoisen glottisherätevokooderin toimintaperiaatteet. Uutta menetelmää arvioidaan vertaamalla sitä alkuperäiseen metodiin ensin käyttämällä mel-kepstrikertoimia käyttävää objektiivista etäisyysmittaa ja toiseksi käyttäen subjektiivisia kuuntelukokeita. Uuden metodin havaittiin olevan laadullisesti samalla tasolla alkuperäisen spektrisovitusmenetelmän kanssa

    Studies on noise robust automatic speech recognition

    Get PDF
    Noise in everyday acoustic environments such as cars, traffic environments, and cafeterias remains one of the main challenges in automatic speech recognition (ASR). As a research theme, it has received wide attention in conferences and scientific journals focused on speech technology. This article collection reviews both the classic and novel approaches suggested for noise robust ASR. The articles are literature reviews written for the spring 2009 seminar course on noise robust automatic speech recognition (course code T-61.6060) held at TKK
    corecore