14 research outputs found

    Automatic Bayesian Density Analysis

    Full text link
    Making sense of a dataset in an automatic and unsupervised fashion is a challenging problem in statistics and AI. Classical approaches for {exploratory data analysis} are usually not flexible enough to deal with the uncertainty inherent to real-world data: they are often restricted to fixed latent interaction models and homogeneous likelihoods; they are sensitive to missing, corrupt and anomalous data; moreover, their expressiveness generally comes at the price of intractable inference. As a result, supervision from statisticians is usually needed to find the right model for the data. However, since domain experts are not necessarily also experts in statistics, we propose Automatic Bayesian Density Analysis (ABDA) to make exploratory data analysis accessible at large. Specifically, ABDA allows for automatic and efficient missing value estimation, statistical data type and likelihood discovery, anomaly detection and dependency structure mining, on top of providing accurate density estimation. Extensive empirical evidence shows that ABDA is a suitable tool for automatic exploratory analysis of mixed continuous and discrete tabular data.Comment: In proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    A Taxonomy of Explainable Bayesian Networks

    Get PDF
    Artificial Intelligence (AI), and in particular, the explainability thereof, has gained phenomenal attention over the last few years. Whilst we usually do not question the decision-making process of these systems in situations where only the outcome is of interest, we do however pay close attention when these systems are applied in areas where the decisions directly influence the lives of humans. It is especially noisy and uncertain observations close to the decision boundary which results in predictions which cannot necessarily be explained that may foster mistrust among end-users. This drew attention to AI methods for which the outcomes can be explained. Bayesian networks are probabilistic graphical models that can be used as a tool to manage uncertainty. The probabilistic framework of a Bayesian network allows for explainability in the model, reasoning and evidence. The use of these methods is mostly ad hoc and not as well organised as explainability methods in the wider AI research field. As such, we introduce a taxonomy of explainability in Bayesian networks. We extend the existing categorisation of explainability in the model, reasoning or evidence to include explanation of decisions. The explanations obtained from the explainability methods are illustrated by means of a simple medical diagnostic scenario. The taxonomy introduced in this paper has the potential not only to encourage end-users to efficiently communicate outcomes obtained, but also support their understanding of how and, more importantly, why certain predictions were made

    Stability and Generalization in Structured Prediction

    Get PDF
    Abstract Structured prediction models have been found to learn effectively from a few large examplessometimes even just one. Despite empirical evidence, canonical learning theory cannot guarantee generalization in this setting because the error bounds decrease as a function of the number of examples. We therefore propose new PAC-Bayesian generalization bounds for structured prediction that decrease as a function of both the number of examples and the size of each example. Our analysis hinges on the stability of joint inference and the smoothness of the data distribution. We apply our bounds to several common learning scenarios, including max-margin and soft-max training of Markov random fields. Under certain conditions, the resulting error bounds can be far more optimistic than previous results and can even guarantee generalization from a single large example
    corecore