779 research outputs found

    A Framework for Combining Defeasible Argumentation with Labeled Deduction

    Full text link
    In the last years, there has been an increasing demand of a variety of logical systems, prompted mostly by applications of logic in AI and other related areas. Labeled Deductive Systems (LDS) were developed as a flexible methodology to formalize such a kind of complex logical systems. Defeasible argumentation has proven to be a successful approach to formalizing commonsense reasoning, encompassing many other alternative formalisms for defeasible reasoning. Argument-based frameworks share some common notions (such as the concept of argument, defeater, etc.) along with a number of particular features which make it difficult to compare them with each other from a logical viewpoint. This paper introduces LDSar, a LDS for defeasible argumentation in which many important issues concerning defeasible argumentation are captured within a unified logical framework. We also discuss some logical properties and extensions that emerge from the proposed framework.Comment: 15 pages, presented at CMSRA Workshop 2003. Buenos Aires, Argentin

    Belief Revision in Structured Probabilistic Argumentation

    Get PDF
    In real-world applications, knowledge bases consisting of all the information at hand for a specific domain, along with the current state of affairs, are bound to contain contradictory data coming from different sources, as well as data with varying degrees of uncertainty attached. Likewise, an important aspect of the effort associated with maintaining knowledge bases is deciding what information is no longer useful; pieces of information (such as intelligence reports) may be outdated, may come from sources that have recently been discovered to be of low quality, or abundant evidence may be available that contradicts them. In this paper, we propose a probabilistic structured argumentation framework that arises from the extension of Presumptive Defeasible Logic Programming (PreDeLP) with probabilistic models, and argue that this formalism is capable of addressing the basic issues of handling contradictory and uncertain data. Then, to address the last issue, we focus on the study of non-prioritized belief revision operations over probabilistic PreDeLP programs. We propose a set of rationality postulates -- based on well-known ones developed for classical knowledge bases -- that characterize how such operations should behave, and study a class of operators along with theoretical relationships with the proposed postulates, including a representation theorem stating the equivalence between this class and the class of operators characterized by the postulates

    A Parameterised Hierarchy of Argumentation Semantics for Extended Logic Programming and its Application to the Well-founded Semantics

    Full text link
    Argumentation has proved a useful tool in defining formal semantics for assumption-based reasoning by viewing a proof as a process in which proponents and opponents attack each others arguments by undercuts (attack to an argument's premise) and rebuts (attack to an argument's conclusion). In this paper, we formulate a variety of notions of attack for extended logic programs from combinations of undercuts and rebuts and define a general hierarchy of argumentation semantics parameterised by the notions of attack chosen by proponent and opponent. We prove the equivalence and subset relationships between the semantics and examine some essential properties concerning consistency and the coherence principle, which relates default negation and explicit negation. Most significantly, we place existing semantics put forward in the literature in our hierarchy and identify a particular argumentation semantics for which we prove equivalence to the paraconsistent well-founded semantics with explicit negation, WFSXp_p. Finally, we present a general proof theory, based on dialogue trees, and show that it is sound and complete with respect to the argumentation semantics.Comment: To appear in Theory and Practice of Logic Programmin

    Combining argumentation and clustering techniques in pattern classification problems

    Get PDF
    Clustering techniques can be used as a basis for classification systems in which clusters can be classified into two categories: positive and negative. Given a new instance enew, the classification algorithm is applied to determine to which cluster ci it belongs and the label of the cluster is checked. In such a setting clusters can overlap, and a new instance (or example) can be assigned to more than one cluster. In many cases, determining to which cluster this new instance actually belongs requires a qualitative analysis rather than a numerical one. In this paper we present a novel approach to solve this problem by combining defeasible argumentation and a clustering algorithm based on the Fuzzy Adaptive Resonance Theory neural network model. The proposed approach takes as input a clustering algorithm and a background theory. Given a previously unseen instance enew, it will be classified using the clustering algorithm. If a conflicting situation arises, argumentation will be used in order to consider the user’s preference criteria for classifying examples.Eje: Agentes y Sistemas Inteligentes (ASI)Red de Universidades con Carreras en Informática (RedUNCI

    Embedding defeasible argumentation in the semantic web: an ontology-based approach

    Get PDF
    The SemanticWeb is a project intended to create a universal medium for information exchange by giving semantics to the content of documents on the Web by means of ontology definitions. Ontologies intended for knowledge representation in intelligent agents rely on common-sense reasoning formalizations. Defeasible argumentation has emerged as a successful approach to model common-sense reasoning. Recent research has linked argumentation with belief revision in order to model the dynamics of knowledge. This paper outlines an approach which combines ontologies, argumentation and belief revision by defining an ontology algebra. We suggest how different aspects of ontology integration can be defined in terms of defeasible argumentation and belief revision.Eje: Inteligencia artificialRed de Universidades con Carreras en Informática (RedUNCI

    Some Classical Problems of Inheritance Networks in the Light of Defeasible Ontology Reasoning

    Get PDF
    Reasoning with possibly inconsistent ontologies is an important reasearch topic for the implementation of the Semantic Web as they pose a problem for performing instance checking. We contend that Defeasible Logic Programming (DeLP) is a reliable tool for doing ontology reasoning when Description Logic ontologies can be interpreted as DeLP programs. In this work we present some classical problems of the eld of inheritance networks and show how they are modeled as inconsistent ontologies and thus how the problem of instance checking is solved; we also show how issues in reasoning with argumentation frameworks based on Dung's grounded semantics are also solved when applied to ontology reasoning, and we revise the main algorithm for instance checking when using DeLP with inconsistent ontologies.Eje: XV Workshop de Agentes y Sistemas InteligentesRed de Universidades con Carreras de Informática (RedUNCI
    • …
    corecore