11,192 research outputs found

    Nonlinear Analysis and Control of Interleaved Boost Converter Using Real-Time Cycle to Cycle Variable Slope Compensation

    Get PDF
    Switched-mode power converters are inherently nonlinear and piecewise smooth systems that may exhibit a series of undesirable operations that can greatly reduce the converter's efficiency and lifetime. This paper presents a nonlinear analysis technique to investigate the influence of system parameters on the stability of interleaved boost converters. In this approach, Monodromy matrix that contains all the comprehensive information of converter parameters and control loop can be employed to fully reveal and understand the inherent nonlinear dynamics of interleaved boost converters, including the interaction effect of switching operation. Thereby not only the boundary conditions but also the relationship between stability margin and the parameters given can be intuitively studied by the eigenvalues of this matrix. Furthermore, by employing the knowledge gained from this analysis, a real-Time cycle to cycle variable slope compensation method is proposed to guarantee a satisfactory performance of the converter with an extended range of stable operation. Outcomes show that systems can regain stability by applying the proposed method within a few time periods of switching cycles. The numerical and analytical results validate the theoretical analysis, and experimental results verify the effectiveness of the proposed approach

    Delay time modulation induced oscillating synchronization and intermittent anticipatory/lag and complete synchronizations in time-delay nonlinear dynamical systems

    Get PDF
    Existence of a new type of oscillating synchronization that oscillates between three different types of synchronizations (anticipatory, complete and lag synchronizations) is identified in unidirectionally coupled nonlinear time-delay systems having two different time-delays, that is feedback delay with a periodic delay time modulation and a constant coupling delay. Intermittent anticipatory, intermittent lag and complete synchronizations are shown to exist in the same system with identical delay time modulations in both the delays. The transition from anticipatory to complete synchronization and from complete to lag synchronization as a function of coupling delay with suitable stability condition is discussed. The intermittent anticipatory and lag synchronizations are characterized by the minimum of similarity functions and the intermittent behavior is characterized by a universal asymptotic 3/2-{3/2} power law distribution. It is also shown that the delay time carved out of the trajectories of the time-delay system with periodic delay time modulation cannot be estimated using conventional methods, thereby reducing the possibility of decoding the message by phase space reconstruction.Comment: accepted for publication in CHAOS, revised in response to referees comment

    Fundamentals and applications of spatial dissipative solitons in photonic devices : [Chapter 6]

    Get PDF
    We review the properties of optical spatial dissipative solitons (SDS). These are stable, self‐localized optical excitations sitting on a uniform, or quasi‐uniform, background in a dissipative environment like a nonlinear optical cavity. Indeed, in optics they are often termed “cavity solitons.” We discuss their dynamics and interactions in both ideal and imperfect systems, making comparison with experiments. SDS in lasers offer important advantages for applications. We review candidate schemes and the tremendous recent progress in semiconductor‐based cavity soliton lasers. We examine SDS in periodic structures, and we show how SDS can be quantitatively related to the locking of fronts. We conclude with an assessment of potential applications of SDS in photonics, arguing that best use of their particular features is made by exploiting their mobility, for example in all‐optical delay lines

    Feedback Control of Traveling Wave Solutions of the Complex Ginzburg Landau Equation

    Full text link
    Through a linear stability analysis, we investigate the effectiveness of a noninvasive feedback control scheme aimed at stabilizing traveling wave solutions of the one-dimensional complex Ginzburg Landau equation (CGLE) in the Benjamin-Feir unstable regime. The feedback control is a generalization of the time-delay method of Pyragas, which was proposed by Lu, Yu and Harrison in the setting of nonlinear optics. It involves both spatial shifts, by the wavelength of the targeted traveling wave, and a time delay that coincides with the temporal period of the traveling wave. We derive a single necessary and sufficient stability criterion which determines whether a traveling wave is stable to all perturbation wavenumbers. This criterion has the benefit that it determines an optimal value for the time-delay feedback parameter. For various coefficients in the CGLE we use this algebraic stability criterion to numerically determine stable regions in the (K,rho) parameter plane, where rho is the feedback parameter associated with the spatial translation and K is the wavenumber of the traveling wave. We find that the combination of the two feedbacks greatly enlarges the parameter regime where stabilization is possible, and that the stability regions take the form of stability tongues in the (K,rho)--plane. We discuss possible resonance mechanisms that could account for the spacing with K of the stability tongues.Comment: 33 pages, 12 figure
    corecore