7,583 research outputs found

    Reliable Prediction of Channel Assignment Performance in Wireless Mesh Networks

    Get PDF
    The advancements in wireless mesh networks (WMN), and the surge in multi-radio multi-channel (MRMC) WMN deployments have spawned a multitude of network performance issues. These issues are intricately linked to the adverse impact of endemic interference. Thus, interference mitigation is a primary design objective in WMNs. Interference alleviation is often effected through efficient channel allocation (CA) schemes which fully utilize the potential of MRMC environment and also restrain the detrimental impact of interference. However, numerous CA schemes have been proposed in research literature and there is a lack of CA performance prediction techniques which could assist in choosing a suitable CA for a given WMN. In this work, we propose a reliable interference estimation and CA performance prediction approach. We demonstrate its efficacy by substantiating the CA performance predictions for a given WMN with experimental data obtained through rigorous simulations on an ns-3 802.11g environment.Comment: Accepted in ICACCI-201

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Characterization of multi-channel interference

    Get PDF
    Multi-channel communication protocols in wireless networks usually assume perfect orthogonality between wireless channels or consider only the use of interference-free channels. The first approach may overestimate the performance whereas the second approach may fail to utilize the spectrum efficiently. Therefore, a more realistic approach would be the careful use of interfering channels by controlling the interference at an acceptable level. We present a methodology to estimate the packet error rate (PER) due to inter-channel interference in a wireless network. The methodology experimentally characterizes the multi-channel interference and analytically estimates it based on the observations from the experiments. Furthermore, the analytical estimation is used in simulations to derive estimates of the capacity in larger networks. Simulation results show that the achievable network capacity, which is defined as the number of simultaneous transmissions, significantly increases with realistic interfering channels compared with the use of only orthogonal channels. When we consider the same number of channels, the achievable capacity with realistic interfering channels can be close to the capacity of idealistic orthogonal channels. This shows that overlapping channels which constitute a much smaller band, provides more efficient use of the spectrum. Finally, we explore the correctness of channel orthogonality and show why this assumption may fail in a practical setting

    PACE: Simple Multi-hop Scheduling for Single-radio 802.11-based Stub Wireless Mesh Networks

    Get PDF
    IEEE 802.11-based Stub Wireless Mesh Networks (WMNs) are a cost-effective and flexible solution to extend wired network infrastructures. Yet, they suffer from two major problems: inefficiency and unfairness. A number of approaches have been proposed to tackle these problems, but they are too restrictive, highly complex, or require time synchronization and modifications to the IEEE 802.11 MAC. PACE is a simple multi-hop scheduling mechanism for Stub WMNs overlaid on the IEEE 802.11 MAC that jointly addresses the inefficiency and unfairness problems. It limits transmissions to a single mesh node at each time and ensures that each node has the opportunity to transmit a packet in each network-wide transmission round. Simulation results demonstrate that PACE can achieve optimal network capacity utilization and greatly outperforms state of the art CSMA/CA-based solutions as far as goodput, delay, and fairness are concerned
    corecore