6 research outputs found

    On the reconstruction of polytopes

    Get PDF
    Blind and Mani, and later Kalai, showed that the face lattice of a simple polytope is determined by its graph, namely its 1-skeleton. Call a vertex of a d-polytope nonsimple if the number of edges incident to it is more than d. We show that (1) the face lattice of any d-polytope with at most two nonsimple vertices is determined by its 1-skeleton; (2) the face lattice of any d-polytope with at most d- 2 nonsimple vertices is determined by its 2-skeleton; and (3) for any d> 3 there are two d-polytopes with d- 1 nonsimple vertices, isomorphic (d- 3) -skeleta and nonisomorphic face lattices. In particular, the result (1) is best possible for 4-polytopes. © 2018, Springer Science+Business Media, LLC, part of Springer Nature

    Polytopes close to being simple

    Get PDF
    It is known that polytopes with at most two nonsimple vertices are reconstructible from their graphs, and that d-polytopes with at most d- 2 nonsimple vertices are reconstructible from their 2-skeletons. Here we close the gap between 2 and d- 2 , showing that certain polytopes with more than two nonsimple vertices are reconstructible from their graphs. In particular, we prove that reconstructibility from graphs also holds for d-polytopes with d+ k vertices and at most d- k+ 3 nonsimple vertices, provided

    Reconstructibility of matroid polytopes

    Get PDF
    We specify what is meant for a polytope to be reconstructible from its graph or dual graph. And we introduce the problem of class reconstructibility, i.e., the face lattice of the polytope can be determined from the (dual) graph within a given class. We provide examples of cubical polytopes that are not reconstructible from their dual graphs. Furthermore, we show that matroid (base) polytopes are not reconstructible from their graphs and not class reconstructible from their dual graphs; our counterexamples include hypersimplices. Additionally, we prove that matroid polytopes are class reconstructible from their graphs, and we present a O(n3)O(n^3) algorithm that computes the vertices of a matroid polytope from its nn-vertex graph. Moreover, our proof includes a characterisation of all matroids with isomorphic basis exchange graphs.Comment: 22 pages, 5 figure
    corecore