41 research outputs found

    Some recent results in the analysis of greedy algorithms for assignment problems

    Get PDF
    We survey some recent developments in the analysis of greedy algorithms for assignment and transportation problems. We focus on the linear programming model for matroids and linear assignment problems with Monge property, on general linear programs, probabilistic analysis for linear assignment and makespan minimization, and on-line algorithms for linear and non-linear assignment problems

    Well-solvable special cases of the TSP : a survey

    Get PDF
    The Traveling Salesman Problem belongs to the most important and most investigated problems in combinatorial optimization. Although it is an NP-hard problem, many of its special cases can be solved efficiently. We survey these special cases with emphasis on results obtained during the decade 1985-1995. This survey complements an earlier survey from 1985 compiled by Gilmore, Lawler and Shmoys. Keywords: Traveling Salesman Problem, Combinatorial optimization, Polynomial time algorithm, Computational complexity

    Heuristic Solution Approaches to the Solid Assignment Problem

    Get PDF
    The 3-dimensional assignment problem, also known as the Solid Assignment Problem (SAP), is a challenging problem in combinatorial optimisation. While the ordinary or 2-dimensional assignment problem is in the P-class, SAP which is an extension of it, is NP-hard. SAP is the problem of allocating n jobs to n machines in n factories such that exactly one job is allocated to one machine in one factory. The objective is to minimise the total cost of getting these n jobs done. The problem is commonly solved using exact methods of integer programming such as Branch-and-Bound B&B. As it is intractable, only approximate solutions are found in reasonable time for large instances. Here, we suggest a number of approximate solution approaches, one of them the Diagonals Method (DM), relies on the Kuhn-Tucker Munkres algorithm, also known as the Hungarian Assignment Method. The approach was discussed, hybridised, presented and compared with other heuristic approaches such as the Average Method, the Addition Method, the Multiplication Method and the Genetic Algorithm. Moreover, a special case of SAP which involves Monge-type matrices is also considered. We have shown that in this case DM finds the exact solution efficiently. We sought to provide illustrations of the models and approaches presented whenever appropriate. Extensive experimental results are included and discussed. The thesis ends with a conclusions and some suggestions for further work on the same and related topics

    Scheduling Models with Additional Features: Synchronization, Pliability and Resiliency

    Get PDF
    In this thesis we study three new extensions of scheduling models with both practical and theoretical relevance, namely synchronization, pliability and resiliency. Synchronization has previously been studied for flow shop scheduling and we now apply the concept to open shop models for the first time. Here, as opposed to the traditional models, operations that are processed together all have to be started at the same time. Operations that are completed are not removed from the machines until the longest operation in their group is finished. Pliability is a new approach to model flexibility in flow shops and open shops. In scheduling with pliability, parts of the processing load of the jobs can be re-distributed between the machines in order to achieve better schedules. This is applicable, for example, if the machines represent cross-trained workers. Resiliency is a new measure for the quality of a given solution if the input data are uncertain. A resilient solution remains better than some given bound, even if the original input data are changed. The more we can perturb the input data without the solution losing too much quality, the more resilient the solution is. We also consider the assignment problem, as it is the traditional combinatorial optimization problem underlying many scheduling problems. Particularly, we study a version of the assignment problem with a special cost structure derived from the synchronous open shop model and obtain new structural and complexity results. Furthermore we study resiliency for the assignment problem. The main focus of this thesis is the study of structural properties, algorithm development and complexity. For synchronous open shop we show that for a fixed number of machines the makespan can be minimized in polynomial time. All other traditional scheduling objectives are at least as hard to optimize as in the traditional open shop model. Starting out research in pliability we focus on the most general case of the model as well as two relevant special cases. We deliver a fairly complete complexity study for all three versions of the model. Finally, for resiliency, we investigate two different questions: `how to compute the resiliency of a given solution?' and `how to find a most resilient solution?'. We focus on the assignment problem and single machine scheduling to minimize the total sum of completion times and present a number of positive results for both questions. The main goal is to make a case that the concept deserves further study

    Subject index volumes 1–92

    Get PDF

    On Computation and Application of Optimal Transport

    Get PDF
    The Optimal Transport (OT) problem naturally arises in various machine learning problems, where one needs to align data from multiple sources. For example, the training data and application scenarios oftentimes have a domain gap, e.g., the training data is annotated photos collected in the daytime, yet the application scenario is in dark hours. In this case, we need to align the two datasets, so that the annotation information can be shared across them. During my Ph.D. study, I propose scalable algorithms for efficient OT computation, and its novel applications in end-to-end learning. For OT computation, I consider both discrete cases and continuous cases. For the discrete cases, I develop an Inexact Proximal point method for exact Optimal Transport problem (IPOT) with the proximal operator approximately evaluated at each iteration using projections to the probability simplex. The algorithm (a) converges to exact Wasserstein distance with theoretical guarantee and robust regularization parameter selection, (b) alleviates numerical stability issue, (c) has similar computational complexity to Sinkhorn, and (d) avoids the shrinking problem when apply to generative models. Furthermore, a new algorithm is proposed based on IPOT to obtain sharper Wasserstein barycenter. For the continuous cases, I propose an implicit generative learning-based framework called SPOT (Scalable Push-forward of Optimal Transport). Specifically, we approximate the optimal transport plan by a pushforward of a reference distribution, and cast the optimal transport problem into a minimax problem. We then can solve OT problems efficiently using primal dual stochastic gradient-type algorithms. To explore the connections between OT and end-to-end learning, I developed a differentiable top-k operator, and a differentiable permutation step. For the top-k operation, i.e., finding the k largest or smallest elements from a collection of scores, is an important model component used in information retrieval, machine learning, and data mining. However, if the top-k operation is implemented in an algorithmic way, e.g., using bubble algorithm, the resulting model cannot be trained in an end-to-end way using prevalent gradient descent algorithms. This is because these implementations typically involve swapping indices, whose gradient cannot be computed. Moreover, the corresponding mapping from the input scores to the indicator vector of whether this element belongs to the top-k set is essentially discontinuous. To address the issue, we propose a smoothed approximation, namely the SOFT (Scalable Optimal transport-based diFferenTiable) top-k operator. Specifically, our SOFT top-k operator approximates the output of the top-k operation as the solution of an Entropic Optimal Transport (EOT) problem. The gradient of the SOFT operator can then be efficiently approximated based on the optimality conditions of EOT problem. We apply the proposed operator to the k-nearest neighbors and beam search algorithms, and demonstrate improved performance. For the differentiable permutation step, I connect optimal transport to a variant of regression problem, where the correspondence between input and output data is not available. Such shuffled data is commonly observed in many real-world problems. Taking flow cytometry as an example, the measuring instruments may not be able to maintain the correspondence between the samples and the measurements. Due to the combinatorial nature of the problem, most existing methods are only applicable when the sample size is small, and limited to linear regression models. To overcome such bottlenecks, we propose a new computational framework -- ROBOT -- for the shuffled regression problem, which is applicable to large data and complex nonlinear models. Specifically, we reformulate the regression without correspondence as a continuous optimization problem. Then by exploiting the interaction between the regression model and the data correspondence, we develop a hypergradient approach based on differentiable programming techniques. Such a hypergradient approach essentially views the data correspondence as an operator of the regression, and therefore allows us to find a better descent direction for the model parameter by differentiating through the data correspondence. ROBOT can be further extended to the inexact correspondence setting, where there may not be an exact alignment between the input and output data. Thorough numerical experiments show that ROBOT achieves better performance than existing methods in both linear and nonlinear regression tasks, including real-world applications such as flow cytometry and multi-object tracking.Ph.D
    corecore