27,325 research outputs found

    Source Coding with Fixed Lag Side Information

    Full text link
    We consider source coding with fixed lag side information at the decoder. We focus on the special case of perfect side information with unit lag corresponding to source coding with feedforward (the dual of channel coding with feedback) introduced by Pradhan. We use this duality to develop a linear complexity algorithm which achieves the rate-distortion bound for any memoryless finite alphabet source and distortion measure.Comment: 10 pages, 3 figure

    Secure Multiterminal Source Coding with Side Information at the Eavesdropper

    Full text link
    The problem of secure multiterminal source coding with side information at the eavesdropper is investigated. This scenario consists of a main encoder (referred to as Alice) that wishes to compress a single source but simultaneously satisfying the desired requirements on the distortion level at a legitimate receiver (referred to as Bob) and the equivocation rate --average uncertainty-- at an eavesdropper (referred to as Eve). It is further assumed the presence of a (public) rate-limited link between Alice and Bob. In this setting, Eve perfectly observes the information bits sent by Alice to Bob and has also access to a correlated source which can be used as side information. A second encoder (referred to as Charlie) helps Bob in estimating Alice's source by sending a compressed version of its own correlated observation via a (private) rate-limited link, which is only observed by Bob. For instance, the problem at hands can be seen as the unification between the Berger-Tung and the secure source coding setups. Inner and outer bounds on the so called rates-distortion-equivocation region are derived. The inner region turns to be tight for two cases: (i) uncoded side information at Bob and (ii) lossless reconstruction of both sources at Bob --secure distributed lossless compression. Application examples to secure lossy source coding of Gaussian and binary sources in the presence of Gaussian and binary/ternary (resp.) side informations are also considered. Optimal coding schemes are characterized for some cases of interest where the statistical differences between the side information at the decoders and the presence of a non-zero distortion at Bob can be fully exploited to guarantee secrecy.Comment: 26 pages, 16 figures, 2 table

    On rate-distortion with mixed types of side information

    Get PDF
    In this correspondence, we consider rate-distortion examples in the presence of side information. For a system with some side information known at both the encoder and decoder, and some known only at the decoder, we evaluate the rate distortion function for both Gaussian and binary sources. While the Gaussian example is a straightforward generalization of the corresponding result by Wyner, the binary example proves more difficult and is solved using a multidimensional optimization approach. Leveraging the insights gained from the binary example, we then solve the more complicated binary Heegard and Berger problem of decoding when side information may be present. The results demonstrate the existence of a new type of successive refinement in which the refinement information is decoded together with side information that is not available for the initial description

    Polar codes and polar lattices for the Heegard-Berger problem

    Get PDF
    Explicit coding schemes are proposed to achieve the rate-distortion function of the Heegard-Berger problem using polar codes. Specifically, a nested polar code construction is employed to achieve the rate-distortion function for doublysymmetric binary sources when the side information may be absent. The nested structure contains two optimal polar codes for lossy source coding and channel coding, respectively. Moreover, a similar nested polar lattice construction is employed when the source and the side information are jointly Gaussian. The proposed polar lattice is constructed by nesting a quantization polar lattice and a capacity-achieving polar lattice for the additive white Gaussian noise channel

    Secure Lossy Source Coding with Side Information at the Decoders

    Full text link
    This paper investigates the problem of secure lossy source coding in the presence of an eavesdropper with arbitrary correlated side informations at the legitimate decoder (referred to as Bob) and the eavesdropper (referred to as Eve). This scenario consists of an encoder that wishes to compress a source to satisfy the desired requirements on: (i) the distortion level at Bob and (ii) the equivocation rate at Eve. It is assumed that the decoders have access to correlated sources as side information. For instance, this problem can be seen as a generalization of the well-known Wyner-Ziv problem taking into account the security requirements. A complete characterization of the rate-distortion-equivocation region for the case of arbitrary correlated side informations at the decoders is derived. Several special cases of interest and an application example to secure lossy source coding of binary sources in the presence of binary and ternary side informations are also considered. It is shown that the statistical differences between the side information at the decoders and the presence of non-zero distortion at the legitimate decoder can be useful in terms of secrecy. Applications of these results arise in a variety of distributed sensor network scenarios.Comment: 7 pages, 5 figures, 1 table, to be presented at Allerton 201
    • …
    corecore