2,489 research outputs found

    A Randomized Kernel-Based Secret Image Sharing Scheme

    Full text link
    This paper proposes a (k,nk,n)-threshold secret image sharing scheme that offers flexibility in terms of meeting contrasting demands such as information security and storage efficiency with the help of a randomized kernel (binary matrix) operation. A secret image is split into nn shares such that any kk or more shares (knk\leq n) can be used to reconstruct the image. Each share has a size less than or at most equal to the size of the secret image. Security and share sizes are solely determined by the kernel of the scheme. The kernel operation is optimized in terms of the security and computational requirements. The storage overhead of the kernel can further be made independent of its size by efficiently storing it as a sparse matrix. Moreover, the scheme is free from any kind of single point of failure (SPOF).Comment: Accepted in IEEE International Workshop on Information Forensics and Security (WIFS) 201

    Cryptanalysis of two chaotic encryption schemes based on circular bit shift and XOR operations

    Get PDF
    Recently two encryption schemes were proposed by combining circular bit shift and XOR operations, under the control of a pseudorandom bit sequence (PRBS) generated from a chaotic system. This paper studies the security of these two encryption schemes and reports the following findings: 1) there exist some security defects in both schemes; 2) the underlying chaotic PRBS can be reconstructed as an equivalent key by using only two chosen plaintexts; 3) most elements in the underlying chaotic PRBS can be obtained by a differential known-plaintext attack using only two known plaintexts. Experimental results are given to demonstrate the feasibility of the proposed attack.Comment: 17 pages, 8 figure

    Deciphering a novel image cipher based on mixed transformed Logistic maps

    Full text link
    Since John von Neumann suggested utilizing Logistic map as a random number generator in 1947, a great number of encryption schemes based on Logistic map and/or its variants have been proposed. This paper re-evaluates the security of an image cipher based on transformed logistic maps and proves that the image cipher can be deciphered efficiently under two different conditions: 1) two pairs of known plain-images and the corresponding cipher-images with computational complexity of O(218+L)O(2^{18}+L); 2) two pairs of chosen plain-images and the corresponding cipher-images with computational complexity of O(L)O(L), where LL is the number of pixels in the plain-image. In contrast, the required condition in the previous deciphering method is eighty-seven pairs of chosen plain-images and the corresponding cipher-images with computational complexity of O(27+L)O(2^{7}+L). In addition, three other security flaws existing in most Logistic-map-based ciphers are also reported.Comment: 10 pages, 2 figure

    A Novel Latin Square Image Cipher

    Full text link
    In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color images. Our contributions to the image encryption community include 1) we develop new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box ; 2) we provide a new way of integrating probabilistic encryption in image encryption by embedding random noise in the least significant image bit-plane; and 3) we construct LSIC with these Latin square image encryption primitives all on one keyed Latin square in a new loom-like substitution-permutation network. Consequently, the proposed LSIC achieve many desired properties of a secure cipher including a large key space, high key sensitivities, uniformly distributed ciphertext, excellent confusion and diffusion properties, semantically secure, and robustness against channel noise. Theoretical analysis show that the LSIC has good resistance to many attack models including brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental analysis under extensive simulation results using the complete USC-SIPI Miscellaneous image dataset demonstrate that LSIC outperforms or reach state of the art suggested by many peer algorithms. All these analysis and results demonstrate that the LSIC is very suitable for digital image encryption. Finally, we open source the LSIC MATLAB code under webpage https://sites.google.com/site/tuftsyuewu/source-code.Comment: 26 pages, 17 figures, and 7 table

    Optimal quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks

    Full text link
    Recently, an image scrambling encryption algorithm of pixel bit based on chaos map was proposed. Considering the algorithm as a typical binary image scrambling/permutation algorithm exerting on plaintext of size M×(8N)M\times (8N), this paper proposes a novel optimal method to break it with some known/chosen-plaintexts. The spatial complexity and computational complexity of the attack are only O(32MN)O(32\cdot MN) and O(16n0MN)O(16\cdot n_0\cdot MN) respectively, where n0n_0 is the number of known/chosen-plaintexts used. The method can be easily extended to break any permutation-only encryption scheme exerting on plaintext of size M×NM\times N and with LL different levels of values. The corresponding spatial complexity and computational complexity are only O(MN)O(MN) and O(logL(MN)MN)O(\lceil\log_L(MN)\rceil \cdot MN) respectively. In addition, some specific remarks on the performance of the image scrambling encryption algorithm are presented.Comment: 11 pages, 6 figure
    corecore