4,710 research outputs found

    Fluid flow queue models for fixed-mobile network evaluation

    Get PDF
    A methodology for fast and accurate end-to-end KPI, like throughput and delay, estimation is proposed based on the service-centric traffic flow analysis and the fluid flow queuing model named CURSA-SQ. Mobile network features, like shared medium and mobility, are considered defining the models to be taken into account such as the propagation models and the fluid flow scheduling model. The developed methodology provides accurate computation of these KPIs, while performing orders of magnitude faster than discrete event simulators like ns-3. Finally, this methodology combined to its capacity for performance estimation in MPLS networks enables its application for near real-time converged fixed-mobile networks operation as it is proven in three use case scenarios

    Optimal Control of Software Ensuring Safety and Functionality

    Get PDF
    Existing verification and validation methodologies can detect software violations very effectively but fail to provide any mechanism for correcting faults once they are detected. Detection of faults, their diagnosis and corrective actions are all essential components of any software rectification framework. In this paper, we propose a framework for correction of violations in software systems ensuring that the desired goals of the system are achieved. We describe a stochastic finite state machine used to abstract a software system along with the uncertainty in its operating environment. Safety property violations and satisfaction of functionalities are abstracted using penalties and rewards on the states, respectively. Rectification of software is then formulated as a stochastic optimal control problem over this abstraction. Algorithms polynomial in the size of the abstraction have been developed for solving this optimization problem exactly. The paper also applies the developed framework to a variety of examples from different domains

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 2: Army fault tolerant architecture design and analysis

    Get PDF
    Described here is the Army Fault Tolerant Architecture (AFTA) hardware architecture and components and the operating system. The architectural and operational theory of the AFTA Fault Tolerant Data Bus is discussed. The test and maintenance strategy developed for use in fielded AFTA installations is presented. An approach to be used in reducing the probability of AFTA failure due to common mode faults is described. Analytical models for AFTA performance, reliability, availability, life cycle cost, weight, power, and volume are developed. An approach is presented for using VHSIC Hardware Description Language (VHDL) to describe and design AFTA's developmental hardware. A plan is described for verifying and validating key AFTA concepts during the Dem/Val phase. Analytical models and partial mission requirements are used to generate AFTA configurations for the TF/TA/NOE and Ground Vehicle missions

    Selectable Heaps and Their Application to Lazy Search Trees

    Get PDF
    We show the O(log n) time extract minimum function of efficient priority queues can be generalized to the extraction of the k smallest elements in O(k log(n/k)) time. We first show the heap-ordered tree selection of Kaplan et al. can be applied on the heap-ordered trees of the classic Fibonacci heap to support the extraction in O(k \log(n/k)) amortized time. We then show selection is possible in a priority queue with optimal worst-case guarantees by applying heap-ordered tree selection on Brodal queues, supporting the operation in O(k log(n/k)) worst-case time. Via a reduction from the multiple selection problem, Ω(k log(n/k)) time is necessary. We then apply the result to the lazy search trees of Sandlund & Wild, creating a new interval data structure based on selectable heaps. This gives optimal O(B+n) lazy search tree performance, lowering insertion complexity into a gap Δi to O(log(n/|Δi|))$ time. An O(1)-time merge operation is also made possible under certain conditions. If Brodal queues are used, all runtimes of the lazy search tree can be made worst-case. The presented data structure uses soft heaps of Chazelle, biased search trees, and efficient priority queues in a non-trivial way, approaching the theoretically-best data structure for ordered data
    corecore