13 research outputs found

    The Power of Quantum Fourier Sampling

    Get PDF
    A line of work initiated by Terhal and DiVincenzo and Bremner, Jozsa, and Shepherd, shows that quantum computers can efficiently sample from probability distributions that cannot be exactly sampled efficiently on a classical computer, unless the PH collapses. Aaronson and Arkhipov take this further by considering a distribution that can be sampled efficiently by linear optical quantum computation, that under two feasible conjectures, cannot even be approximately sampled classically within bounded total variation distance, unless the PH collapses. In this work we use Quantum Fourier Sampling to construct a class of distributions that can be sampled by a quantum computer. We then argue that these distributions cannot be approximately sampled classically, unless the PH collapses, under variants of the Aaronson and Arkhipov conjectures. In particular, we show a general class of quantumly sampleable distributions each of which is based on an "Efficiently Specifiable" polynomial, for which a classical approximate sampler implies an average-case approximation. This class of polynomials contains the Permanent but also includes, for example, the Hamiltonian Cycle polynomial, and many other familiar #P-hard polynomials. Although our construction, unlike that proposed by Aaronson and Arkhipov, likely requires a universal quantum computer, we are able to use this additional power to weaken the conjectures needed to prove approximate sampling hardness results

    Power of Quantum Computation with Few Clean Qubits

    Get PDF
    This paper investigates the power of polynomial-time quantum computation in which only a very limited number of qubits are initially clean in the |0> state, and all the remaining qubits are initially in the totally mixed state. No initializations of qubits are allowed during the computation, nor intermediate measurements. The main results of this paper are unexpectedly strong error-reducible properties of such quantum computations. It is proved that any problem solvable by a polynomial-time quantum computation with one-sided bounded error that uses logarithmically many clean qubits can also be solvable with exponentially small one-sided error using just two clean qubits, and with polynomially small one-sided error using just one clean qubit. It is further proved in the case of two-sided bounded error that any problem solvable by such a computation with a constant gap between completeness and soundness using logarithmically many clean qubits can also be solvable with exponentially small two-sided error using just two clean qubits. If only one clean qubit is available, the problem is again still solvable with exponentially small error in one of the completeness and soundness and polynomially small error in the other. As an immediate consequence of the above result for the two-sided-error case, it follows that the TRACE ESTIMATION problem defined with fixed constant threshold parameters is complete for the classes of problems solvable by polynomial-time quantum computations with completeness 2/3 and soundness 1/3 using logarithmically many clean qubits and just one clean qubit. The techniques used for proving the error-reduction results may be of independent interest in themselves, and one of the technical tools can also be used to show the hardness of weak classical simulations of one-clean-qubit computations (i.e., DQC1 computations).Comment: 44 pages + cover page; the results in Section 8 are overlapping with the main results in arXiv:1409.677

    Efficient classical simulation of noisy random quantum circuits in one dimension

    Get PDF
    Understanding the computational power of noisy intermediate-scale quantum (NISQ) devices is of both fundamental and practical importance to quantum information science. Here, we address the question of whether error-uncorrected noisy quantum computers can provide computational advantage over classical computers. Specifically, we study noisy random circuit sampling in one dimension (or 1D noisy RCS) as a simple model for exploring the effects of noise on the computational power of a noisy quantum device. In particular, we simulate the real-time dynamics of 1D noisy random quantum circuits via matrix product operators (MPOs) and characterize the computational power of the 1D noisy quantum system by using a metric we call MPO entanglement entropy. The latter metric is chosen because it determines the cost of classical MPO simulation. We numerically demonstrate that for the two-qubit gate error rates we considered, there exists a characteristic system size above which adding more qubits does not bring about an exponential growth of the cost of classical MPO simulation of 1D noisy systems. Specifically, we show that above the characteristic system size, there is an optimal circuit depth, independent of the system size, where the MPO entanglement entropy is maximized. Most importantly, the maximum achievable MPO entanglement entropy is bounded by a constant that depends only on the gate error rate, not on the system size. We also provide a heuristic analysis to get the scaling of the maximum achievable MPO entanglement entropy as a function of the gate error rate. The obtained scaling suggests that although the cost of MPO simulation does not increase exponentially in the system size above a certain characteristic system size, it does increase exponentially as the gate error rate decreases, possibly making classical simulation practically not feasible even with state-of-the-art supercomputers.Comment: 27 pages, 9 figures, accepted for publication in Quantu

    Efficient classical simulation of noisy random quantum circuits in one dimension

    Get PDF
    Understanding the computational power of noisy intermediate-scale quantum (NISQ) devices is of both fundamental and practical importance to quantum information science. Here, we address the question of whether error-uncorrected noisy quantum computers can provide computational advantage over classical computers. Specifically, we study noisy random circuit sampling in one dimension (or 1D noisy RCS) as a simple model for exploring the effects of noise on the computational power of a noisy quantum device. In particular, we simulate the real-time dynamics of 1D noisy random quantum circuits via matrix product operators (MPOs) and characterize the computational power of the 1D noisy quantum system by using a metric we call MPO entanglement entropy. The latter metric is chosen because it determines the cost of classical MPO simulation. We numerically demonstrate that for the two-qubit gate error rates we considered, there exists a characteristic system size above which adding more qubits does not bring about an exponential growth of the cost of classical MPO simulation of 1D noisy systems. Specifically, we show that above the characteristic system size, there is an optimal circuit depth, independent of the system size, where the MPO entanglement entropy is maximized. Most importantly, the maximum achievable MPO entanglement entropy is bounded by a constant that depends only on the gate error rate, not on the system size. We also provide a heuristic analysis to get the scaling of the maximum achievable MPO entanglement entropy as a function of the gate error rate. The obtained scaling suggests that although the cost of MPO simulation does not increase exponentially in the system size above a certain characteristic system size, it does increase exponentially as the gate error rate decreases, possibly making classical simulation practically not feasible even with state-of-the-art supercomputers

    Fermion Sampling: a robust quantum computational advantage scheme using fermionic linear optics and magic input states

    Full text link
    Fermionic Linear Optics (FLO) is a restricted model of quantum computation which in its original form is known to be efficiently classically simulable. We show that, when initialized with suitable input states, FLO circuits can be used to demonstrate quantum computational advantage with strong hardness guarantees. Based on this, we propose a quantum advantage scheme which is a fermionic analogue of Boson Sampling: Fermion Sampling with magic input states. We consider in parallel two classes of circuits: particle-number conserving (passive) FLO and active FLO that preserves only fermionic parity and is closely related to Matchgate circuits introduced by Valiant. Mathematically, these classes of circuits can be understood as fermionic representations of the Lie groups U(d)U(d) and SO(2d)SO(2d). This observation allows us to prove our main technical results. We first show anticoncentration for probabilities in random FLO circuits of both kind. Moreover, we prove robust average-case hardness of computation of probabilities. To achieve this, we adapt the worst-to-average-case reduction based on Cayley transform, introduced recently by Movassagh, to representations of low-dimensional Lie groups. Taken together, these findings provide hardness guarantees comparable to the paradigm of Random Circuit Sampling. Importantly, our scheme has also a potential for experimental realization. Both passive and active FLO circuits are relevant for quantum chemistry and many-body physics and have been already implemented in proof-of-principle experiments with superconducting qubit architectures. Preparation of the desired quantum input states can be obtained by a simple quantum circuit acting independently on disjoint blocks of four qubits and using 3 entangling gates per block. We also argue that due to the structured nature of FLO circuits, they can be efficiently certified.Comment: 65 pages, 13 figures, 1 table, v2: improved discussion and narrative, numerics about anticoncentration added, references updated, comments and suggestions are welcom
    corecore