3,128 research outputs found

    Adversarial behaviours knowledge area

    Full text link
    The technological advancements witnessed by our society in recent decades have brought improvements in our quality of life, but they have also created a number of opportunities for attackers to cause harm. Before the Internet revolution, most crime and malicious activity generally required a victim and a perpetrator to come into physical contact, and this limited the reach that malicious parties had. Technology has removed the need for physical contact to perform many types of crime, and now attackers can reach victims anywhere in the world, as long as they are connected to the Internet. This has revolutionised the characteristics of crime and warfare, allowing operations that would not have been possible before. In this document, we provide an overview of the malicious operations that are happening on the Internet today. We first provide a taxonomy of malicious activities based on the attacker’s motivations and capabilities, and then move on to the technological and human elements that adversaries require to run a successful operation. We then discuss a number of frameworks that have been proposed to model malicious operations. Since adversarial behaviours are not a purely technical topic, we draw from research in a number of fields (computer science, criminology, war studies). While doing this, we discuss how these frameworks can be used by researchers and practitioners to develop effective mitigations against malicious online operations.Published versio

    Applications of Machine Learning to Threat Intelligence, Intrusion Detection and Malware

    Get PDF
    Artificial Intelligence (AI) and Machine Learning (ML) are emerging technologies with applications to many fields. This paper is a survey of use cases of ML for threat intelligence, intrusion detection, and malware analysis and detection. Threat intelligence, especially attack attribution, can benefit from the use of ML classification. False positives from rule-based intrusion detection systems can be reduced with the use of ML models. Malware analysis and classification can be made easier by developing ML frameworks to distill similarities between the malicious programs. Adversarial machine learning will also be discussed, because while ML can be used to solve problems or reduce analyst workload, it also introduces new attack surfaces

    Epidemic Spreading with External Agents

    Full text link
    We study epidemic spreading processes in large networks, when the spread is assisted by a small number of external agents: infection sources with bounded spreading power, but whose movement is unrestricted vis-\`a-vis the underlying network topology. For networks which are `spatially constrained', we show that the spread of infection can be significantly speeded up even by a few such external agents infecting randomly. Moreover, for general networks, we derive upper-bounds on the order of the spreading time achieved by certain simple (random/greedy) external-spreading policies. Conversely, for certain common classes of networks such as line graphs, grids and random geometric graphs, we also derive lower bounds on the order of the spreading time over all (potentially network-state aware and adversarial) external-spreading policies; these adversarial lower bounds match (up to logarithmic factors) the spreading time achieved by an external agent with a random spreading policy. This demonstrates that random, state-oblivious infection-spreading by an external agent is in fact order-wise optimal for spreading in such spatially constrained networks

    Epidemic Thresholds with External Agents

    Full text link
    We study the effect of external infection sources on phase transitions in epidemic processes. In particular, we consider an epidemic spreading on a network via the SIS/SIR dynamics, which in addition is aided by external agents - sources unconstrained by the graph, but possessing a limited infection rate or virulence. Such a model captures many existing models of externally aided epidemics, and finds use in many settings - epidemiology, marketing and advertising, network robustness, etc. We provide a detailed characterization of the impact of external agents on epidemic thresholds. In particular, for the SIS model, we show that any external infection strategy with constant virulence either fails to significantly affect the lifetime of an epidemic, or at best, sustains the epidemic for a lifetime which is polynomial in the number of nodes. On the other hand, a random external-infection strategy, with rate increasing linearly in the number of infected nodes, succeeds under some conditions to sustain an exponential epidemic lifetime. We obtain similar sharp thresholds for the SIR model, and discuss the relevance of our results in a variety of settings.Comment: 12 pages, 2 figures (to appear in INFOCOM 2014

    Applications of Machine Learning in Medical Prognosis Using Electronic Medical Records

    Get PDF
    Approximately 84 % of hospitals are adopting electronic medical records (EMR) In the United States. EMR is a vital resource to help clinicians diagnose the onset or predict the future condition of a specific disease. With machine learning advances, many research projects attempt to extract medically relevant and actionable data from massive EMR databases using machine learning algorithms. However, collecting patients\u27 prognosis factors from Electronic EMR is challenging due to privacy, sensitivity, and confidentiality. In this study, we developed medical generative adversarial networks (GANs) to generate synthetic EMR prognosis factors using minimal information collected during routine care in specialized healthcare facilities. The generated prognosis variables used in developing predictive models for (1) chronic wound healing in patients diagnosed with Venous Leg Ulcers (VLUs) and (2) antibiotic resistance in patients diagnosed with Skin and soft tissue infections (SSTIs). Our proposed medical GANs, EMR-TCWGAN and DermaGAN, can produce both continuous and categorical features from EMR. We utilized conditional training strategies to enhance training and generate classified data regarding healing vs. non-healing in EMR-TCWGAN and susceptibility vs. resistance in DermGAN. The ability of the proposed GAN models to generate realistic EMR data was evaluated by TSTR (test on the synthetic, train on the real), discriminative accuracy, and visualization. We analyzed the synthetic data augmentation technique\u27s practicality in improving the wound healing prognostic model and antibiotic resistance classifier. We achieved the area under the curve (AUC) of 0.875 in the wound healing prognosis model and an average AUC of 0.830 in the antibiotic resistance classifier by using the synthetic samples generated by GANs in the training process. These results suggest that GANs can be considered a data augmentation method to generate realistic EMR data

    Practical Attacks Against Graph-based Clustering

    Full text link
    Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.Comment: ACM CCS 201

    xLED: Covert Data Exfiltration from Air-Gapped Networks via Router LEDs

    Full text link
    In this paper we show how attackers can covertly leak data (e.g., encryption keys, passwords and files) from highly secure or air-gapped networks via the row of status LEDs that exists in networking equipment such as LAN switches and routers. Although it is known that some network equipment emanates optical signals correlated with the information being processed by the device ('side-channel'), intentionally controlling the status LEDs to carry any type of data ('covert-channel') has never studied before. A malicious code is executed on the LAN switch or router, allowing full control of the status LEDs. Sensitive data can be encoded and modulated over the blinking of the LEDs. The generated signals can then be recorded by various types of remote cameras and optical sensors. We provide the technical background on the internal architecture of switches and routers (at both the hardware and software level) which enables this type of attack. We also present amplitude and frequency based modulation and encoding schemas, along with a simple transmission protocol. We implement a prototype of an exfiltration malware and discuss its design and implementation. We evaluate this method with a few routers and different types of LEDs. In addition, we tested various receivers including remote cameras, security cameras, smartphone cameras, and optical sensors, and also discuss different detection and prevention countermeasures. Our experiment shows that sensitive data can be covertly leaked via the status LEDs of switches and routers at a bit rates of 10 bit/sec to more than 1Kbit/sec per LED
    • …
    corecore