434 research outputs found

    Fixed-point elimination in the intuitionistic propositional calculus

    Full text link
    It is a consequence of existing literature that least and greatest fixed-points of monotone polynomials on Heyting algebras-that is, the algebraic models of the Intuitionistic Propositional Calculus-always exist, even when these algebras are not complete as lattices. The reason is that these extremal fixed-points are definable by formulas of the IPC. Consequently, the Ό\mu-calculus based on intuitionistic logic is trivial, every Ό\mu-formula being equivalent to a fixed-point free formula. We give in this paper an axiomatization of least and greatest fixed-points of formulas, and an algorithm to compute a fixed-point free formula equivalent to a given Ό\mu-formula. The axiomatization of the greatest fixed-point is simple. The axiomatization of the least fixed-point is more complex, in particular every monotone formula converges to its least fixed-point by Kleene's iteration in a finite number of steps, but there is no uniform upper bound on the number of iterations. We extract, out of the algorithm, upper bounds for such n, depending on the size of the formula. For some formulas, we show that these upper bounds are polynomial and optimal

    Constructive Mathematics in Theory and Programming Practice

    Get PDF
    The first part of the paper introduces the varieties of modern constructive mathematics, concentrating on Bishop’s constructive mathematics(BISH). It gives a sketch of both Myhill’s axiomatic system for BISH and a constructive axiomatic development of the real line R. The second part of the paper focuses on the relation between constructive mathematics and programming, with emphasis on Martin-Lof’s theory of types as a formal system for BISH

    Dialectica Categories for the Lambek Calculus

    Full text link
    We revisit the old work of de Paiva on the models of the Lambek Calculus in dialectica models making sure that the syntactic details that were sketchy on the first version got completed and verified. We extend the Lambek Calculus with a \kappa modality, inspired by Yetter's work, which makes the calculus commutative. Then we add the of-course modality !, as Girard did, to re-introduce weakening and contraction for all formulas and get back the full power of intuitionistic and classical logic. We also present the categorical semantics, proved sound and complete. Finally we show the traditional properties of type systems, like subject reduction, the Church-Rosser theorem and normalization for the calculi of extended modalities, which we did not have before

    Ruitenburg's Theorem via Duality and Bounded Bisimulations

    Get PDF
    For a given intuitionistic propositional formula A and a propositional variable x occurring in it, define the infinite sequence of formulae { A \_i | i≄\ge1} by letting A\_1 be A and A\_{i+1} be A(A\_i/x). Ruitenburg's Theorem [8] says that the sequence { A \_i } (modulo logical equivalence) is ultimately periodic with period 2, i.e. there is N ≄\ge 0 such that A N+2 ↔\leftrightarrow A N is provable in intuitionistic propositional calculus. We give a semantic proof of this theorem, using duality techniques and bounded bisimulations ranks

    Fixed-point elimination in the Intuitionistic Propositional Calculus (extended version)

    Get PDF
    It is a consequence of existing literature that least and greatest fixed-points of monotone polynomials on Heyting algebras-that is, the alge- braic models of the Intuitionistic Propositional Calculus-always exist, even when these algebras are not complete as lattices. The reason is that these extremal fixed-points are definable by formulas of the IPC. Consequently, the Ό\mu-calculus based on intuitionistic logic is trivial, every Ό\mu-formula being equiv- alent to a fixed-point free formula. We give in this paper an axiomatization of least and greatest fixed-points of formulas, and an algorithm to compute a fixed-point free formula equivalent to a given Ό\mu-formula. The axiomatization of the greatest fixed-point is simple. The axiomatization of the least fixed- point is more complex, in particular every monotone formula converges to its least fixed-point by Kleene's iteration in a finite number of steps, but there is no uniform upper bound on the number of iterations. We extract, out of the algorithm, upper bounds for such n, depending on the size of the formula. For some formulas, we show that these upper bounds are polynomial and optimal.Comment: extended version of arXiv:1601.0040

    Free Heyting algebra endomorphisms: Ruitenburg’s Theorem and beyond

    Get PDF
    Ruitenburg\u2019s Theorem says that every endomorphism f of a finitely generated free Heyting algebra is ulti- mately periodic if f fixes all the generators but one. More precisely, there is N 65 0 such that f^N+2 = f^N , thus the period equals 2. We give a semantic proof of this theorem, using duality techniques and bounded bisimulation ranks. By the same techniques, we tackle investigation of arbitrary endomorphisms of free algebras. We show that they are not, in general, ultimately periodic. Yet, when they are (e.g. in the case of locally finite subvarieties), the period can be explicitly bounded as function of the cardinality of the set of generators
    • 

    corecore