13 research outputs found

    On the Performance of Opportunistic NOMA in Downlink CoMP Networks

    Get PDF

    User clustering and resource allocation in downlinkCoMP with NOMA

    Get PDF
    In coordinated multipoint (CoMP) system, the cell-edge performance is improved by minimizing inter-cell interference (ICI) through coordination of resources. Additionally, the non-orthogonal multiple access (NOMA) has been introduced as a promising candidate to further enhance the throughput of next generation wireless communication systems. NOMA allows multiple users to access the wireless channel in the same bandwidth simultaneously, however at different transmit power. In joint transmission NOMA in CoMP (JT-NOMA-CoMP), multiple cells jointly transmit data to users using the same time-frequency resources, which significantly improves the system performance. In this paper, we present a low-complexity user clustering and resource allocation strategy in downlink JP-NOMA-CoMP system with multiple antenna. Based on computer simulation, we show that the proposed approach outperforms the conventional JP-OMA-CoMP and single antenna JP-NOMA-CoMP in terms of achievable sum rate

    A Novel Network NOMA Scheme for Downlink Coordinated Three-Point Systems

    Full text link
    In this paper, we propose a network non-orthogonal multiple access (N-NOMA) technique for the downlink coordinated multipoint (CoMP) communication scenario of a cellular network, with randomly deployed users. In the considered N-NOMA scheme, superposition coding (SC) is employed to serve cell-edge users as well as users close to base stations (BSs) simultaneously, and distributed analog beamforming by the BSs to meet the cell-edge user's quality of service (QoS) requirements. The combination of SC and distributed analog beamforming significantly complicates the expressions for the signal-to-interference-plus-noise ratio (SINR) at the reveiver, which makes the performance analysis particularly challenging. However, by using rational approximations, insightful analytical results are obtained in order to characterize the outage performance of the considered N-NOMA scheme. Computer simulation results are provided to show the superior performance of the proposed scheme as well as to demonstrate the accuracy of the analytical results

    Impact of Power Consumption Models on the Energy Efficiency of Downlink NOMA Systems

    Full text link
    While non-orthogonal multiple access (NOMA) improves spectral efficiency, it results in a complexity at the receivers due to successive interference cancellation (SIC). Prior studies on the energy efficiency of NOMA overlook the SIC overhead and rely on simplistic power consumption models (PCM). To fill this gap, we first introduce PCM-κ\kappa that accounts for SIC-related power expenditure, where κ\kappa represents the average power consumption per SIC layer. Then, to investigate the energy efficiency of NOMA and joint transmission (JT)-CoMP NOMA, we formulate a power allocation problem for maximizing the energy efficiency and consequently propose a global approach running at a centralized entity and a local algorithm running at a base station. We evaluate the energy efficiency using PCM-κ\kappa and two PCMs commonly used in the literature. Numerical analysis suggests that using simplistic PCMs leads to a few orders of magnitude overestimation of energy efficiency, especially when the receivers have low rate requirements. Despite the superiority of JT-CoMP NOMA over conventional NOMA in finding a feasible power allocation, the difference in their energy efficiency is only marginal. Moreover, when conventional NOMA is feasible, the optimal solution for JT-CoMP NOMA converges to conventional NOMA and NOMA schemes favour the users with the best channel quality
    corecore