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On the Performance of Opportunistic NOMA in
Downlink CoMP Networks

Yue Tian, Andrew R. Nix and Mark Beach

Abstract—In this letter, an opportunistic NOMA (ONOMA)
scheme is proposed in Coordinated Multi-Point (CoMP) system.
Compared with the conventional joint-transmission (JT) NOMA
in CoMP, the main purpose of the ONOMA scheme is to advance
the capability of the CoMP system and the effectiveness of the
successive-interference-cancellation (SIC) decoding process. The
relationship between the topology of the ONOMA cells and the
sum-rate of CoMP network is analysed. Meanwhile, the outage
probability of ONOMA system is derived and evaluated in ideal
case and non-ideal case respectively. In the numerical results, the
sum-rate and the outage performance of the proposed ONOMA
CoMP are compared with the JT-NOMA CoMP and it is shown
that the proposed ONOMA scheme outperforms the conventional
JT-NOMA scheme in CoMP system.

Index Terms—Non-orthogonal multiple access, coordinated
multi-point system, joint transmission, opportunistic transmis-
sion.

I. INTRODUCTION

AS one of the key technology enhancements for LTE-A,
the coordinated multi-point (CoMP) transmission scheme

is an area of intense research [1]. For the downlink of the
CoMP system, the access points (AP) allocate the same
channel to a cell-edge user and this channel can not be
allocated to other users at the same time. Thus, the spectral
effectiveness of the CoMP system degrades when the cell-edge
users increase in number if the orthogonal multiple access
is employed. Recently, a promising non-orthogonal multiple
access (NOMA) scheme has been proposed for CoMP in an
endeavour to tackle this difficulty [2].

The NOMA technique is acknowledged as a potential
candidate air interface technique for the fifth generation (5G)
mobile networks [3]-[7]. By using NOMA, which merges the
superposition coding (SC) scheme at transmitters with the
successive interference cancellation (SIC) scheme at receivers
[3], users are capable of decoding their own signal even though
they are using the same frequency channel simultaneously.
For the downlink of the cellular network, the system level
performance along with the user fairness of NOMA is studied
in [4]. In [5], a cooperative NOMA with simultaneous wireless
information and power transfer scheme is investigated. In [6]
and [7], the ergodic sum-rate and outage behavior of NOMA
is studied in the normal cellular network and a relay-based
heterogeneous network respectively.

The NOMA strategy is able to offer extensively improved
spectrum efficiency, however, the complexity of NOMA scales
with the number of users alongside the level of multi-user
interference [3]. To overcome this issue alongside provid-
ing additional performance enhancements, an opportunistic
NOMA (ONOMA) scheme is proposed in this research. More

specifically, the main contributions of this letter are as follows:
a) we first consider a joint-transmission NOMA (JT-NOMA)
scheme in CoMP, and then propose a novel ONOMA scheme;
b) by analyzing the topology of ONOMA CoMP, we describe
the procedure of the ONOMA scheme in ideal and non-
ideal scenarios respectively; c) the achievable sum-rate and
the outage performance of the proposed scheme are derived
for different ONOMA topologies; d) the comparisons of the
sum-rate and outage probability of JT-NOMA with ONOMA
are computed and presented.

II. NOMA IN COMP
In this study, we consider the downlink of a CoMP network

which includes B APs and K users. The architecture under
consideration here is a single antenna AP and user platform,
thus beamforming is not considered at this stage. Let B
and K denote the set of APs and users, respectively, where
B = {1, 2..., B} and K = {1, 2, ...,K}. The signal which is
broadcasted by AP b (b ∈ B) to all the K users is denoted as∑

i∈K
√
aiPbsi, where Pb is the normalized transmit power

at AP b; si is the desired signal of the user i (i ∈ K);
the power allocation coefficient to si is denoted as ai. The
Rayleigh fading channel from the AP b to the user i is
denoted as hi,b, where hi,b =

√
ui,bgi,b; the factor gi,b is

the independent and identically distributed circular symmetric
complex Gaussian random variables (RV) with zero mean and
variance σ̂2

i,b, representing fast fading; the factor ui,b denotes
the slow fading. The additive white Gaussian noise (AWGN)
at the user i is denoted as ni (with variance σ2

i ).

A. JT-NOMA in CoMP
For the JT-NOMA in CoMP, the transmit power that is

allocated to si is denoted by aiP for all APs, where P is
the normalised power. Then the observation at the user k is
given by

rk =
∑
i∈K

ĥk

√
aiPsi + nk, (1)

where ĥk denotes the equivalent channel coefficient to the user

k and ĥk =
∑B

b=1 hk,b. Here we assume that:
∣∣∣ĥ1

∣∣∣2 ≤ · · · ≤∣∣∣ĥK

∣∣∣2, then in agreement with the SC in NOMA, the power
allocation values to the K users are sorted as: a1 ≥ · · · ≥ aK .
Subsequently, every receiver makes use of the SIC technique
and is capable of decoding the signals of the users in the
weaker channels faultlessly [3], [4]. Consequently, the rate of
detecting sk at user k can be expressed as

Rk = log

(
1 +

∣∣ĥk

∣∣2ak
Ik + σ2

kP−1

)
, (2)
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where Ik =
∣∣∣ĥk

∣∣∣2∑m∈K am along with am < ak; note that
when m = K, Ik = 0.

The sum-rate of K users in conventional JT-NOMA CoMP
is expressed as

Rsum =
∑
k∈K

{
log
(
1 +

∣∣ĥk

∣∣2ak
Ik + σ2

kP−1

)}
. (3)

B. Opportunistic NOMA Strategy in CoMP

We assume that the range of the transmit power at each
AP is [Pmin, Pmax]. The transmit power allocated to sk at the
AP b is given by Pk,b = akP , then Pk,b ∈ [Pmin, Pmax]. The
ONOMA strategy is implemented via the following procedure:

1) Initialization (Reference Broadcast): The B APs sep-
arately broadcast a normalized reference signal sr to
the K users, with reference transmit power Pr. Via
the B reference signals, each user creates a reference
power set. The user k’s (k ∈ K) reference power set is
expressed as Dk = {Pr |hk,1|2 , · · · , Pr |hk,B |2}.

2) Scheduling (AP Selection and ONOMA Cells Genera-
tion): By using the opportunistic AP selection algorithm,
each user generates a set for its preferred APs. The user
k’s preferred AP set is denoted by Sk. The required
channel state information (for SC precoding in NOMA
as [2]-[6]) along with the AP selection results are fed
back from K users to B APs. Then based on the
feedback, the CoMP system generates B ONOMA cells.
The ONOMA cell b contains the AP b and the users who
select the AP b in their preferred AP sets, therefore the
set B can also indicates the B ONOMA cells. The set
of the users in ONOMA cell b is denoted by Wb.

Algorithm 1 Opportunistic AP Selection (OAPS) Scheme
1) Input B, Dk, Pr, Pmax and Pmin .
2) Set b = 0, Sk = ∅ and B = card(B).
3) Define D̂k = P−1

r ·Dk and normalized D̂k, such that
∀b ∈ B, D̂k{b} ∈ [0, 1].

4) Let εk denote an AP selection threshold value at user k.
5) Randomly select the value of εk from an interference

range. (e.g. the interference range is set to [0, 0.1] in
simulation results).

6) Define δk = Pminεk. For all b ∈ B, compare
PmaxD̂k{b} with δk; if PmaxD̂k{b} ≥ δk , add the
AP’s index b to Sk.

For the user k, the interference from the APs which are se-
lected by Sk is defined as the intra-ONOMA cell interference
(this can be canceled by SIC); the interference from the APs
which are not selected by Sk is defined as the inter-ONOMA
cell interference (this cannot be canceled by SIC). Let Ψk

denote as the inter-ONOMA cell interference to the user k ;
the observation at user k is given by

rk =
∑
b∈Sk

hk,b

∑
i∈Wb

√
aiPsi +Ψk + nk, (4)

where Ψk =
∑

j∈{B\Sk}
∑

n∈Wj
hk,j

√
anPsn.

By implementing the Algorithm 1, the threshold value εk at
user k ensures that for all j ∈ {B\Sk} and b ∈ Sk, there exist
hk,j

√
anPsn < hk,b

√
aiPsi , where n ∈ Wj and i ∈ Wb.

Therefore, the complexity of SIC is reduced as the SIC is
only charge of the intra-ONOMA cell interference. Note that
some ONOMA cells may have an overlapping area (by using
Algorithm 1), which means the users could be selected by
different ONOMA cells at the same time. Based on whether
the ONOMA cells have overlapping area, the ONOMA CoMP
can be divided into ideal case and non-ideal case.

1) Ideal Case of ONOMA CoMP: For the ideal case, each
user only selects one AP in its preferred AP set, which means
for all k ∈ K, card(Sk) = 1, where card(Sk) denote the
cardinality of a set Sk. Therefore, there is no overlapping area
between the different ONOMA cells. Assume that am<ak for
all m ∈ {Wb; b ∈ Sk}, by using SIC, the rate of detecting sk
at user k can be expressed as follows

Rk,k = log
(
1 +

ak
∣∣hk,b

∣∣2
Ik +Ψk + σ2P−1

)
, (5)

where b ∈ Sk, Ik =
∣∣∣hk,b

√∑
m∈{Wb;b∈Sk} am

∣∣∣2 and

Ψk =
∣∣∣∑j∈{B\b} hk,j

√∑
n∈Wj

an

∣∣∣2. Note that for all m ∈
{Wb; b ∈ Sk}, if there is no am<ak then Ik = 0. The sum-rate
of K users for the ideal case ONOMA is given by

Rsum =
∑
b∈B

∑
k∈Wb

log

(
1 +

ak
∣∣hk,b

∣∣2
Ik +Ψk + σ2P−1

)
. (6)

2) Non-ideal Case of ONOMA CoMP: For the non-ideal
case, two or more ONOMA cells may have the overlapping
area, and that is because some users may select multiple APs.
Let Ob denote the set of APs whose ONOMA cells exist the
overlapping area with the ONOMA cell b, then an optimized
ONOMA strategy can be implemented via the Algorithm 2.

Algorithm 2 Non-ideal Cases ONOMA Implementation
1) Input Sk and Wb; compute the cardinality of Sk for all

∀k ∈ K.
2) If card(S1) ≥ · · · ≥ card(SK), the power allocation

values to the K users will be sorted as a1 ≥ · · · ≥ aK .
3) For M = {1, 2...M} users whose preferred AP sets

have the same cardinality, the power allocation values
will be sorted based on their equivalent channels. e.g.
Let ĥm denote the equivalent channel of user m (m ∈
M), where ĥm =

∑
b∈Sm

hm,b; if card(S1) = · · · =
card(SM ), but

∣∣ĥ1

∣∣2 ≤ · · · ≤
∣∣ĥM

∣∣2, then a1 ≥ · · · ≥
aM .

4) For all b ∈ B, let Sb
i′ denote the element who has the

largest cardinality in {Si; i ∈ Wb} and define a null set
Ub; then ∀o ∈ {Wb′ ; b

′ ∈ Ob}, compare card(Sb
i′) with

card(So); if card(So) ≥ card(Sb
i′), add the user’s

index o to Ub.
5) For all b ∈ B and k ∈ K, AP b broadcasts signal∑

i∈{Wb∪Ub}
√
aiPsi and user k decodes its observa-

tions.
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Assume that am<ak (m ∈ {Wb; b ∈ Sk}), the rate of
detecting sk at user k is given by

Rk,k = log

{
1 +

∣∣∑
b∈Sk

hk,b

∣∣2 ak
Ik +Ψk + σ2

kP−1

}
, (7)

where Ik =
∣∣∣∑b∈Sk

(√∑
m∈Wb

amhk,b

)∣∣∣2 and Ψk =∣∣∣∑j∈{B\Sk}

(
hk,j

√∑
n∈{Wj∪Uj} an

)∣∣∣2. If there is no am<ak
for all m ∈ {Wb; b ∈ Sk}, then Ik = 0. The sum-rate of K
users for the non-ideal case ONOMA is given by

Rsum =
∑
k∈K

log

(
1 +

∣∣∑
b∈Sk

hk,b

∣∣2ak
Ik +Ψk + σ2

kP−1

)
. (8)

III. OUTAGE PROBABILITY OF ONOMA

Define R′
k,n and Rk,n as user k’s targeted and real data rate

to decode the signal sn, respectively. Then outage will happen
when Rk,n < R′

k,n, which means the user k cannot detect the
user n’s signal sn before detecting its desired signal sk. Let
us define this outage event as Ek,n =

{
Rk,n < R′

k,n

}
. For

the ideal ONOMA CoMP, by substituting (5) to Ek,n, then

Ek,n =

{
an∑

m∈{Wb;b∈Sk} am +
(
ρk
∣∣hk,b

∣∣2)−1 < 2R
′
k,n − 1

}
,

(9)

where ρk = P
(
Ψk + σ2

k

)−1
. The complementary set of the

outage event can be derived by

Ec
k,n

(a)
=

{∣∣hk,b

∣∣2 >
θnρ

−1
k

an − θn
∑

m∈
{
Wb;b∈Sk

} am
}
, (10)

where θn = 2R
′
k,n − 1 and step (a) follows the condition that

an > θn
∑

m∈{Wb;b∈Sk} am.

Define υn = θn

[
ρkan − ρkθn

∑
m∈{Wb;b∈Sk} am

]−1

and
φ = max {υ1, . . . , υk}, the outage probability at user k is
shown as

Pout
k = 1−P

(
Ec

k,1 ∩ · · · ∩ Ec
k,k

)
= 1−P(

∣∣hk,b

∣∣2 > φ). (11)

The cumulative distribution function (CDF) and probabil-
ity density function (pdf) of the unordered Rayleigh chan-
nel

∣∣hk,b

∣∣2 is given by F (x) = 1 − exp(−x/σ̂2
k,b) and

f(x) = σ̂−2
k,b exp(−x/σ̂2

k,b) respectively. Define Nb =
card {Wb|b ∈ Sk} and assume that user k’s decoding order
in ONOMA cell b is nb(k) (where order nb(k) is higher than
nb(k+ 1)). Based on the high order statistics in [8], (11) can
be derived as

Pout
k =

∫ φ

0

Nb!f(x) (F (x))
nb(k)−1

(1− F (x))
Nb−nb(k)

(nb(k)− 1)!(Nb − nb(k))!
dx

(12)

(b)
=

Nb−nb(k)∑
i=0

(−1)i
(
1− exp

(
σ̂−2
k,b(nb(k) + i)φ

))
4i

nb(k)
σ̂−2
k,b(nb(k) + i)

,

(13)

where 4i
nb(k)

= (Nb−nb(k))!(nb(k)−1−i)!i!
Nb!

and (b) follows
from the power series of exponential functions.

For the non-ideal ONOMA, Ec
k,n is expressed as

Ec
k,n =

{
ρk
∑

b∈Sk

∣∣hk,b

∣∣2an
ρk
∑

b∈Sk

∣∣hk,b

∣∣2∑
m∈Wb

am + 1
> θn

}
(14)

(c)
=

{∑
b∈Sk

∣∣√γk,buk,bgk,b
∣∣2 > θn (ρkan)

−1

}
(15)

=

{∑
b∈Sk

|Hk,b|2 > υ̂n

}
, (16)

where (14) is derived by substituting (7) to
{
Rk,n > R′

k,n

}
;

step (c) follows the condition that ∀b ∈ Sk: γk,b > 0, where
γk,b = (1 − θn

∑
m∈Wb

am

an
); in (16), υ̂n = θn (ρkan)

−1

and |Hk,b|2 =
∣∣√γk,buk,bgk,b

∣∣2. According to [9], |Hk,b|2
can be regarded as the generalized chi-square distribution with
variance ζk,b = γk,bσ̂

2
k,b.

Define φ̂ = max {υ̂1, . . . , υ̂k}and Mk = card(Sk). The
pdf of the unordered generalized chi-square RV |Hk,b|2 is
given by

fk(x) =
ζMk

k,b x
Mk−1 exp (−ζk,bx)

Γ (Mk)
, (17)

where Γ (.) denotes the gamma fuctnion. Define Nb =
card {Wb ∪ Ub|b ∈ Sk}; then assume that the user k’s decod-
ing order in ONOMA cell b is nb(k) agian. With the aid of
order statistics and following the similar process in (12)-(13),
the outage probability can be derived from integrating the pdf
of the ordered variable |Hk,b|2 as

Pout
k =

∫ φ̂

0

Nb!f(x) (F (x))
nb(k)−1

(1− F (x))
Nb−nb(k)

(nb(k)− 1)!(Nb − nb(k))!
dx

(18)

=

Nb−nb(k)∑
i=0

(−1)
i
(
F k(φ̂)

)nb(k)+i

4i
nb(k)

ζk,b (nb(k) + i)
. (19)

The unordered CDF F k(φ̂) in (19) can be derived from the
integration of the unordered pdf fk(φ̂) as

F k(φ̂) =

∫ φ̂

0

ζMk

k,b x
Mk−1 exp(−ζk,bx)

Γ (Mk)
dx (20)

(d)
= 1−

Mk−1∑
m=0

(
ζk,bφ̂

)
m exp

(
−ζk,bφ̂

)
Γ (m+ 1)

, (21)

where (d) follows the power series of exponential functions.

IV. NUMERICAL RESULTS

In this section, a time-invariant CoMP system which in-
cludes two single-antenna APs and five single-antenna users
is considered and a Monte Carlo simulation is used to evaluate
the performance of JT-NOMA and ONOMA. The set of the
two APs and five users are denoted by Bo and Ko, respectively.
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In order to obtain the statistical fading distribution, all the
five users are randomly distributed in the two ONOMA cells in
each simulation loop; if a user k is allocated in the ONOMA
cell b but not in the overlapping area, then

∣∣gk,b√uk,b

∣∣2 > εk

and
∣∣gk,b√uk,bo

∣∣2 < εk (where bo ∈ {Bo\b}) ; if a user k is in
the overlapping area of the Bo ONOMA cells, then ∀b ∈ Bo,∣∣gk,b√uk,b

∣∣2 > εk.
The performance of JT-NOMA is evaluated under the same

opportunistic conditions, i.e. the same distribution topologies
and channel fadings are employed by JT-NOMA in each
simulation loop. The power allocation coefficients for both
JT-NOMA and ONOMA are sorted based on the decoding
priority of the Ko users, e.g. assume that ∀i ∈ Ko, the
decoding priority of user i is higher than user i+1, then power
allocation coefficient of user i is set as ai = card(Ko)−i+1

µ ,
where µ is a parameter to ensure that

∑
i∈Ko

ai = 1. The
channels in the following simulation results are normalized
such that

∣∣gk,b√uk,b

∣∣2 ∈ [0, 1]. For the ideal case in ONOMA,
the εk tends to 0 (εk → 0) such that Sk can exclude the APs
only with extremely poor channel gain (

∣∣gk,b√uk,b

∣∣2 −→ 0).
However in practice, more APs with slight poor channel gain
also need to be excluded by Sk, therefore in the following
simulation results, the maximum range of εk in simulations is
set as 0 < εk < 0.1.

In Fig.1, we compare the sum-rate performance between
JT-NOMA CoMP and ONOMA CoMP with different inter-
cell interference threshold levels: the ideal case (εk → 0)
and two practical non-ideal cases where εk ∈ [0,0.01] and
εk ∈ [0,0.1]. Compared with JT-NOMA, the performance gain
of ONOMA becomes significant when the signal to noise
ratio (SNR) is larger than 6 dB. It should also be noticed
that as the inter-ONOMA cell interference is proportional to
the transmit power, for the cases that εk > 0, the ONOMA
sum-rate curves tend to flat with the increase of SNR. The
Fig.2 provides a comparison of outage probability between JT-
NOMA and ONOMA CoMP under different target data rates.
Along with the simulation results, the theoretical curves are
plotted at εk → 0 and εk → 0.1. Compared with the outage
probability curves at εk → 0, it is shown that for each curve
in which εk > 0, the performance loss is proportional to the
value of SNR. Moreover, the increase of εk results in a higher
outage probability under the same SNR level.

V. CONCLUSIONS

An ONOMA scheme is proposed to reduce the complexity
of SIC and in the meantime advance the performance of
NOMA-CoMP system. The relationship between the topology
of the ONOMA cells and the sum-rate of CoMP network has
been analysed. Further, the outage performance of ONOMA
system has been discussed in ideal case and non-ideal case
respectively. Comparing with the conventional JT-NOMA
CoMP, the numerical results show that the proposed ONOMA
CoMP can achieve better sum-rate and outage probability
performance.
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