453 research outputs found

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Receiver algorithms that enable multi-mode baseband terminals

    Get PDF

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    Phase noise effects on OFDM : analysis and mitigation

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is a promising technique which has high spectrum efficiency and the robustness against channel frequency selectivity. One drawback of OFDM is its sensitivity to phase noise. It has been shown that even small phase noise leads to significant performance loss of OFDM. Therefore, phase noise effects on OFDM systems need to be analyzed and methods be provided to its mitigation. Motivated by what have been proposed in the literature, the exact signal to interference plus noise ratio (SINR) is derived in this dissertation for arbitrary phase noise levels. In a multiple access environment with multiple phase noise, the closed form of bit error rate (BER) performance is derived as a function of phase noise parameters. Due to the detrimental effects of phase noise on OFDM, phase noise mitigation is quite necessary. Several schemes are proposed to mitigate both single and multiple phase noise. It is shown that, while outperforming conventional methods, these schemes have the performance close to no-phase-noise case. Two general approaches are presented which extend the conventional schemes proposed in the literature, making them special cases of these general approaches. Moreover, different implementation techniques are also presented. Analytical and numerical results are provided to compare the performance of these migitation approaches and implementation techniques. Similar to OFDM, an OFDM system with multiple antennas, i.e., Multiple Input. Multiple Output (MIMO)-OFDM, also suffer severe performance degradation due to phase noise, and what have been proposed in the literature may not be applicable to MIMO-OFDM. Therefore, a new scheme is proposed to mitigate phase noise for MIMO-OFDM, which provides significant performance gains over systems without phase noise mitigation. This scheme provides a very simple structure and achieves adequate performance with high spectrum efficiency, which makes it very attractive for practical implementations

    Reducing Multiple Access Interference in Broadband Multi-User Wireless Networks

    Get PDF
    This dissertation is devoted to developing multiple access interference (MAI) reduction techniques for multi-carrier multi-user wireless communication networks. In multi-carrier code division multiple access (MC-CDMA) systems, a full multipath diversity can be achieved by transmitting one symbol over multiple orthogonal subcarriers by means of spreading codes. However, in frequency selective fading channels, orthogonality among users can be destroyed leading to MAI. MAI represents the main obstacle to support large number of users in multi-user wireless systems. Consequently, MAI reduction becomes a main challenge when designing multi-carrier multi-user wireless networks. In this dissertation, first, we study MC-CDMA systems with different existing MAI reduction techniques. The performance of the studied systems can be further improved by using a fractionally spaced receivers instead of using symbol spaced receivers. A fractionally spaced receiver is obtained by oversampling received signals in a time domain. Second, a novel circular-shift division multiple access (CSDMA) scheme for multi-carrier multi-user wireless systems is developed. In CSDMA, each symbol is first spread onto multiple orthogonal subcarriers in the frequency domain through repetition codes. The obtained frequency-domain signals are then converted to a time-domain representation. The time-domain signals of different users are then circularly shifted by different numbers of locations. The time-domain circular shifting enables the receiver to extract signals from different users with zero or a small amount of MAI. Our results show that the CSDMA scheme can achieve a full multipath diversity with a performance outperforms that of orthogonal frequency division multiple access (OFDMA). Moreover, multipath diversity of CSDMA can be further improved by employing the time-domain oversampling. Performance fluctuations due to a timing offset between transmitter and receiver clocks in MC-CDMA and CSDMA systems can be removed by employing the time-domain oversampling. Third, we study the theoretical error performance of high mobility single-user wireless communication system with doubly selective (time-varying and frequency-selective) fading channel under impacts of imperfect channel state information (CSI). Throughout this dissertation, intensive computer simulations are performed under various system configurations to investigate the obtained theoretical results, excellent agreements between simulation and theoretical results were observed in this dissertation
    corecore