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ABSTRACT

PHASE NOISE EFFECTS ON OFDM: ANALYSIS AND MITIGATION

by
Songping Wu

Orthogonal frequency division multiplexing (OFDM) is a promising technique which

has high spectrum efficiency and the robustness against channel frequency selectivity.

One drawback of OFDM is its sensitivity to phase noise. It has been shown that even

small phase noise leads to significant performance loss of OFDM. Therefore, phase

noise effects on OFDM systems need to be analyzed and methods be provided to its

mitigation.

Motivated by what have been proposed in the literature, the exact signal to

interference plus noise ratio (SINK) is derived in this dissertation for arbitrary phase

noise levels. In a multiple access environment with multiple phase noise, the closed

form of bit error rate (BER) performance is derived as a function of phase noise

parameters.

Due to the detrimental effects of phase noise on OFDM, phase noise mitigation

is quite necessary. Several schemes are proposed to mitigate both single and multiple

phase noise. It is shown that, while outperforming conventional methods, these

schemes have the performance close to no-phase-noise case. Two general approaches

are presented which extend the conventional schemes proposed in the literature,

making them special cases of these general approaches. Moreover, different implementation

techniques are also presented. Analytical and numerical results are provided to

compare the performance of these migigation approaches and implementation techniques.

Similar to OFDM, an OFDM system with multiple antennas, i.e., Multiple Input

Multiple Output (MIM0)-OFDM, also suffer severe performance degradation due to

phase noise, and what have been proposed in the literature may not be applicable

to MIMO-OFDM. Therefore, a new scheme is proposed to mitigate phase noise for



MIMO-OFDM, which provides significant performance gains over systems without

phase noise mitigation. This scheme provides a very simple structure and achieves

adequate performance with high spectrum efficiency, which makes it very attractive

for practical implementations.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Orthogonal frequency division multiplexing (OFDM) has been widely adopted and

implemented in wire and wireless communications, such as digital terrestrial TV

broadcasting (dTTB), digital subscriber line (DSL), European high performance local

area networks (HIPERLAN) and the IEEE 802.11a standard for wireless local area

networks (WLAN) [1-4]. In comparison to single carrier transmission, OFDM is quite

effective to eliminate inter-symbol interference (ISI) caused by channel multipath

fading while providing high transmission data rate with high spectral efficiency.

Moreover, an OFDM receiver becomes relatively simple with a one-tap channel equalizer.

Hence, it is very well suited for future high data rate wireless multimedia communications.

The disadvantage of OFDM, however, is its sensitivity to both frequency offset

and phase noise. Caused by the frequency difference between the transmitter and

the receiver, or by Doppler shift, frequency offset has been thoroughly analyzed and

many methods have been proposed for its estimation and correction [5-8]. Unlike

frequency offset which is deterministic, phase noise is a random process caused by

the fluctuation of the receiver and transmitter oscillators. Phase noise causes leakage

of DFT which subsequently destroys the orthogonalities among subcarrer signals,

leading to significant performance degradation.

Recent studies have shown that even small phase noise destroys orthogonalities

between OFDM subcarrier signals and subsequently gives rise to both common phase

error (CPE) and intercarrier interference (ICI), causing significant performance loss

[9-15].

1



2

1.2 Phase Noise Model

1.2.1 Principle Description

Phase noise 0(t), generated at both transmitter and receiver oscillators, can be

described as a continuous Brownian motion process or a random Wiener process

given by

which has zero mean and variance 271 -fit, where denotes the phase noise linewidth,

i.e., the frequency spacing between 3-dB points of its Lorentzian power spectral

density function [9,11,16]. Furthermore, it can be shown that

As a random Wiener process, phase noise has independent Gaussian increments

and its power is a monotonically increasing function of time. This indicates that its

power could be infinitely large as time increases [16]. However, if restricted to a finite

period, phase noise can be modeled as a filtered Gaussian random variable [10,13,14].

To better characterize phase noise, Demir et al. [17] developed a unifying theory

using a nonlinear method which proves to be more accurate in describing phase noise.

With such method [17, Remark 7.1], 0(0 is shown to become, asymptotically in

time, a Gaussian random process with a constant mean, a variance that increases

1.2.2 Discrete Phase Noise Model

Consider an N-subcarrier OFDM system with symbol duration T and cyclic prefix

length N9. As indicated in [18], the aforementioned discussion suggests describing



3

phase noise by a discrete Markov process which, for the nth subcarrier of the mth

symbol of an OFDM system, is given by

where u(i)'s denote mutually independent Gaussian random variables with zero mean

The correlation function of Om (n) within the same symbol is shown to be [9,17]

With OFDM modulation, phase noise modifies the system by multiplying each

received signal, in the time domain, by a random rotation factor e 3°m(n), whose

correlation function, for n > 1, is given by
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Note that, from (1.3) and (1.4), phase noise is a non-stationary random process

with its correlation function changing with time m. Nevertheless, the exponential

process of random phase noise, shown in (1.7), is stationary.

1.3 OFDM System Model

1.3.1 OFDM with Phase Noise

Since the effects of phase noise on OFDM systems are of particular interest, perfect

frequency and timing synchronizations are assumed. Thus, in the presence of phase

noise, the OFDM system model is shown in Fig. 1.1.

Figure 1.1 OFDM system model in the presence of phase noise

1.3.2 OFDM Transmitter

The principle of OFDM is to transform the incoming data symbol into B low-rate

which modulates a set of subcarriers using inverse digital

Fourier transform (IDFT) so as to obtain the time-domain signals. A cyclic prefix

with length Ng is then added to these time-domain signals to combat inter-symbol

interference (IASI) caused by channel multipath fading effects and enables simple

channel equalization at the receiver. The resulting baseband signal at the transmitter

can then be expressed by



where ® and (.) denote the circular convolution and IDFT respectively while non)

indicates the AWGN noise with zero mean and variance a2 . For a high-rate OFDM

system, channel is often assumed invariant within a block and the first symbol of each

block is used for channel estimation purpose' . A typical example is the IEEE 802.11a

ALAN standard given in [41. Therefore, hok) is not a function of symbol index m as

long as these symbols are included within the same block. After removing the cyclic

prefix and taking the length-B DFT at the receiver, in terms of o1.9), the received

kth subcarrier signal of the mth symbol is expressed by [20, 21]

where xn,ok) and hok) are the corresponding subcarrier data signal and the channel

fading gain in the frequency domain, respectively; amok), which is the DFT of n, on) ,

denotes the AWGN noise in the frequency domain with zero mean and variance

We thereby assume invariant channel within an OFDM block in the context of the whole
dissertation.
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a2 . The transmitted signals xn,ok) are assumed to be mutually independent with

1.3.4 Phase Noise Effects

Equation o1.10) suggests that the received signal yni ok) is the weighted sun

plus AWGN noise, wherein the weighting coefficients are denoted by

Phase noise destroys orthogonalities among OFDM subcarrier signals and leads to

two detrimental effects:

1. Common phase error oCPE) denoted by chin o0), which indicates the phase rotation

of the desired signal;

2. Intercarrier interference (ICI) represented by the second term of o1.10) as a

which depicts the interference on the desired subcarrier

signal by all the other subcarrier signals of the same OFDM symbol.

The effects of phase noise on OFDM signals are illustrated in Fig. 1.2, where

phase noise corrupts the 16-QAM constellations with both CPE and ICI. It's shown

that phase noise forces the desired signal into a wrong decision area, and worsens

the BER performance accordingly. As indicated in [22], when phase noise variance

is of the order of 10 -1 , phase noise mainly contributes to CPE which plays a more

important role in system performance compared with ICI, while for large phase noise,

ICI becomes the major impairment on the system performance.
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Figure 1.2 Phase noise effects on 16-QAM modulated OFDM signals (a) original
16-QAM constellations ob) 16-QAM constellations corrupted by phase noise

1.4 Conclusions

Both effects of phase noise lead to significant performance loss of OFDM systems,

and consequently raise interests in two aspects.

First, one would like to know how the performance of an OFDM system is related

to phase noise, and in particular, understand the system behavior as a function of

various parameters, such as phase noise, number of subcarriers, transmission data

rate etc., for both single-user and multi-user cases.

Second, there have been some methods in the literature for mitigating phase

noise. It's of interest to propose new schemes which further improve the system

performance. Extension of such schemes into the multi-user case is also desirable

since mitigation methods have never been proposed for the case of multiple phase

noise.

These two issues will be our main tasks throughout this dissertation.



CHAPTER 2

PERFORMANCE ANALYSIS OF OFDM SYSTEMS IN THE

PRESENCE OF PHASE NOISE

2.1 Introduction

Phase noise causes leakage of DFT which subsequently destroys the orthogonalities

among subcarrier signals, causing both CPE and ICI. CPE results in signal phase

rotation which stays invariant within an OFDM symbol, while ICI introduces interferences

to each subcarrier of a certain symbol from all the other subcarriers of that symbol

and therefore exhibits noise-like characteristics.

Phase noise in OFDM systems has been analyzed in many papers [9-15]. The

original work done in [9] has successfully derived an expression of OFDM system

degradation in a closed form, but only valid for small phase noise and large number

of subcarriers. In [10] and [12], the characterization of phase noise and its effects on

OFDM have also been carefully studied and the BER performance has been further

analyzed. In [15] a different approach was proposed that has provided the upper

and lower bounds on signal to noise plus interference ratio (SINKS). In this approach,

by deriving a compact form for SINK bounds, it was easy to show the dependence

of OFDM system performance on some of its critical parameters, such as phase

noise linewidth and number of subcarriers etc.. Nevertheless, the analytical results

in [10, 12, 15] have assumed that phase noise variance is much less than unity, and

are only suitable for AWGN channels even though some simulation results has been

provided over multipath fading channels. On the other hand, in [11], the robustness of

modulation methods to phase noise has been studied in a general OFDM system. The

effect of phase noise bandwidth to subcarrier spacing ratio on system performance, has

been analyzed in [13] and further extended in [14] to include the effect of the number

8
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of subcarriers on system performance both with and without phase noise correction.

The approaches in [11, 13, 14], however, do not provide, even for AWGN channels,

a closed form analytical result that show the exact quantitative relations between

various parameters of an OFDM system and its performance; therefore computer

simulation was necessary to illustrate these relations.

In [21], we have derived the exact SINK expression in a closed form for arbitrary

phase noise level and various numbers of OFDM subcarriers. SINK is expressed as a

function of various critical system parameters and provides a quantitative understanding

of how system behavior changes with a certain parameter. This enables one to

determine under which condition phase noise can be treated as small and consequently

leads to adequate mitigations; and what are the proper parameter settings for a

specific OFDM system which provides adequate performance levels in the presence of

phase noise .

The chapter is organized as follows. In Section 2.2, the exact performance

analysis of the phase noise effects is provided with arbitrary phase noise level and

number of subcarriers; By introducing SINK in a closed form in Section 2.3, OFDM

performance is precisely described as a function of various system parameters in a

multipath fading environment. In Section 2.4, the small phase noise assumption is

given and some approximation results are obtained which fit well with those in the

literature. Simulation results are provided in Section 3.5 to illustrate the effectiveness

of the derived expression in system evaluation. This chapter is concluded in Section

3.6.

2.2 Exact SINR Expression

Many approaches of system analysis in the literature are based on small phase noise

levels and large number of subcarriers. Although this assumption may be true in

practice, a thorough and exact evaluation without such restrictions will not only
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extend those analysis, but also provide an in-depth insight of phase noise effects

on the actual system performance by introducing the latter as a function of critical

system parameters. In particular, with such exact analysis, it's possible to determine

what is an acceptable level of phase noise for a certain OFDM system and how it

can be designed to avoid severe degradation in the presence of such noise. Therefore

in our work, we assume a general OFDM system where phase noise variance is not

necessarily much less than unity and the number of subcarriers is not necessarily very

large. Since SINR is a very important indicator of system performance, its exact

expression will be found and used in our analysis.

From o1.10), SINK can be given by

used. It is also assumed that the OFDM subcarrier signals {x,,ok)} 1:/-01 are mutually

independent random variables with zero mean and variance E. From the definition

in o1.10), we have

Note that, for a slow fading channel as described in Section 1.3.3, given c m o0)

and hok), one can see from (2.1) and o2.2) that the SINK expression has the same form

as the one we have obtained [15] for AWGN channels, provided that the transmitted

signals are independent and the energy of channel response is normalized to unity.

From Appendix A, the energy of cm op) is given by oA.7)
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where Sp = ei? -11, with R= NIT denoting the transmission data rate. Equation

o2.3) shows the dependence of the energy of cm op) on phase noise linewidth number

of subcarriers N and transmission data rate R. Substituting o2.3) into o2.2) yields

denotes the signal to noise ratio per subcarrier. As shown in

next section, both o2.3) and o2.6) indicate that, in the presence of phase noise,

several parameters affect OFDM system performance, resulting in severe performance

degradation which is intolerable in practice. In case of perfect phase synchronization,

op) becomes Dirac delta function, i.e., cm op) = 0 for p	 0, and the SINK

expression of o2.6) reduces to SNR, i.e., r = 78.
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2.3 Phase Noise Effects

In the presence of phase noise, equation o2.6) shows that SINR is a function of various

system parameters, )3, N, T, ra ysand their corresponding ratios. These relations are

separately depicted in Fig. 2.1-2.5.

Figure 2.1 The effect of phase noise linewidth on system performance, where
SNK=20dB and R= 106 samples/s

1) It is well known that OFDM system performance with imperfect oscillators,

is strongly dependent on phase noise linewidth [14]. As shown in Fig. 2.1, the larger

the worse is SINKS, degrading logarithmically linear as a function of phase noise

linewidth fib for /3 >10 2Hz. Hence, as we stated earlier, the best way to eliminate

the detrimental effects of phase noise is to improve the oscillator stability and thus

decrease the phase noise linewidth.

2) It's quite straightforward to see that larger number of subcarriers N leads

to worse system performance due to the smaller subcarrier spacing distance, hence

more sensitive to phase noise. In particular, Fig.2.2 suggests that, when /3/R ratio is

of the order of 10 -3 or less, doubling N always causes about 3 dB loss of SINR for



13

Figure 2.2 The effect of number of subcarriers N on SINK, where SNK=20dB

all N values. This implies that, when ,3IR is below a certain level, SINKS becomes

inversely proportional to the number of subcarriers N.

3) Higher transmission data rate R results in better system performance. In

fact, the transmission data rate to phase noise linewidth ratio RIO is of our interest.

Fig. 2.3 shows that SINK has a limiting low value for small R/0 regardless of SNR

values. This can also be verified from o2.6) by letting AI,3 approach zero, i.e.,

In particular, for very large SNK, or -y5 , the limit of o2.7) is readily approximated

as 1/oN — 1). This suggests that for large phase noise othus low RIO), high SNR does

not help the performance, as in this case, the ICI caused by phase noise is dominant

over AWGN noise. Therefore, a well designed system should have a reasonable RI,3

ratio leading to adequate performance. In particular, o2.6) shows that SINK becomes

SNR when R/,8 increases without limit, i.e.,



Figure 2.3 SINK as a function of A//3, where N=256

This makes sense by noticing that when R//3 goes to infinity, the system is

equivalent to one without phase noise.

4) From o2.6), SINKS is strongly dependent on dp = e3 * (2"P-V ) , depicted in

Fig. 2.4. For high data rate R, when 0 is very small in comparison to the subcarrier

spacing RIN, i.e., 3NIR is of the order of 10 -5 or less, phase noise becomes negligible

and it is equivalent to non-phase-noise case. In fact, when /3NR is between 10 -5 and

10 -2 , phase noise is small and thus effective schemes are available for its mitigation.

5) Higher SNK leads to the better performance in the presence of phase noise.

But systems with high SNK are more sensitive to phase noise, as shown in Fig. 2.5.

For high phase noise levels with 3NIR > 1, SINK degradation exceeds the value of

SNR itself. This implies that the ICI overwhelms the desired signals. In particular, if

we use phase noise mitigation methods based on CPE estimation, as indicated in [14],

14



Figure 2.4 SINK as a function of phase noise liriewidth to subcarrier spacing ratio

Figure 2.5 SNK as a function of SINKS degradation



16

this does not improve or even makes the performance worse with high phase noise

levels. It can be seen from Fig. 2.5 that, When 10 -2 < i3NIR < 1, though system

loss does not exceed the value of SNK, it is pretty high, e.g., SINK degrades 20dB

for 3NIR = 10 -1 when SNK equals 30dB. In this case, phase noise correction can be

applied but performance requirement may not be guaranteed.

2.4 Small Phase Noise Approximation

In case of small phase noise, the SINK expression of OFDM systems becomes simpler

than that in o2.6). In the literature, small phase noise condition was presented by

either the absolute value of phase noise or the phase noise variance which is much

less than unity. The former definition is more strict than the latter, and is actually a

special case of the latter. In order to distinguish these two definitions, the former is

referred to as small phase noise while the latter as small phase noise variance.

2.4.1 Small Phase Noise

Phase noise is small when its absolute value is much less than unity, namely, I O n, oon)I

1. With this definition, the approximation ejCbm (n) r-Z 1 + jOnion) holds [10, 13].

Applying this approximation to cm op), we have [15]
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Then in terms of o2.9) and o2.10), after some algebraic manipulations, we have, for

large N, [15]

where 0 is defined in Section 1.2.1 as the two-sided 3dB linewidth 1. Substituting

o2.11) and o2.12) into the definition of the SINK (2.1) yields

'Phase noise linewidth /3 is defined as the one-sided 3dB linewidth in [15]. Due to this,
equation (2.11) and (2.12) are different from the references by a factor of two.



2.4.2 Small Phase Noise Variance

Small phase noise can also be interpreted as phase noise whose variance is much less

equation o2.3) further yields osee Appendix B for details)

Considering the difference of phase noise linewidth /3 definition in [9] oone-sided

linewidth) and in the Section 1.2.2 of this dissertation otwo-sided linewidth), the result

of o2.17) is exactly the same as that derived in [9]. In Appendix B, equation oB.5)

further shows that the total energy of all phase noise components cm op) is equal to

unity, from which, together with o2.2) and o2.17), it follows that

Substituting o2.17), o2.18) into o2.1), we end up with
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Remark 1 It's quite straightforward to see that small phase noise in Section 2.4.1

always leads to small phase noise variance as defined in Section 2.4.2, but the converse

is not true. That is, small phase noise variance is a necessary condition of small phase

noise. In other words, the discussion in Section 2.4.2 is more general than that in

Section 2.4.1. Hence, the results in Section 2.4.1 are also applicable for the condition

held in Section 2.4.2.

Remark 2 In Section 2.4.1, the approximation was made by dropping those high-

order terms, which are random and may not be zero mean. Moreover, it occurred

before the ensemble average. Therefore, the ensemble average could possibly accumulate

the errors caused by the approximation. In particular, the energy of c m o0) should

always be less than unity while in (2.11) it was derived to be a little larger than

unity, due to the approximation error spread after ensemble average. Whereas, the

approximation in Section 2.4.2 was carried on after the calculation of statistics has

been done and therefore does not give rise to such a problem. Hence, the derived SINK

expression in Section 2.4.1 could be less accurate than that in Section 2.4.2.

In summary, the derived SINK form in Section 2.4.2 is more compact than

that in Section 2.4.1 and more suitable in many applications with its relatively lower

requirement on phase noise levels, while the upper and lower bounds given in Section

2.4.1 is specially useful in designing an OFDM system in the presence of small phase

noise.

2.5 Conclusions

In this chapter, the phase noise effects on OFDM signals have been carefully analyzed.

The derived exact closed-form SINK expression has provided an in-depth insight of
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phase noise effects on the actual system performance by introducing the SINK as

a function of critical system parameters, such as phase noise linewidth number

of subcarriers N, duration of symbol period T, and SNK -y8 . It has been further

demonstrated that the derived SINKS expression can be further simplified by introducing

either small phase noise assumption, or the assumption of small phase noise variance.

the upper and lower SINK bounds have been derived for the case of small phase noise;

and with small phase noise variance, it has been shown that the simplified result using

suitable approximation coincides with what has been done in the literature.



CHAPTER 3

PHASE NOISE MITIGATION

3.1 Introduction

Due to its severe effects on OFDM system performance, phase noise mitigation should

be considered in practice. As introduced in the previous chapter, there is no guarantee

of the effectiveness of any mitigation schemes in case of large phase noise. In fact,

system performance with large phase noise may not be improved and, in many cases,

become even worse after phase noise mitigation. Nevertheless, it was shown in the

literature [10, 20, 23], that mitigation is quite effective for small phase noise levels

ophase noise variance is much less than unity, or more specifically, as we discussed

earlier, 13NIR is of the order of 10 -2 or less).

To compensate for phase noise, several methods have been proposed in [10, 13,

20,23,24] and references therein. These methods can be categorized into time-domain

[10, 24] and frequency-domain approaches [13, 20, 23].

Time domain approaches aim to eliminate the multiplicative phase noise before

applying digital Fourier transform oDAFT) at the receiver. This can be achieved by

extracting a single pilot subcarrier signal from each OFDM symbol to drive a phase

lock loop oPLL) for phase noise mitigation [10]. Despite its low cost, this method

requires a special pilot pattern with pilots inserted in the middle of the bandwidth

which is not feasible in practice. Another time-domain method proposed in [24]

interprets time domain phase noise using orthogonal transforms oe.g., discrete cosine

transform oDCT)), and mitigates phase noise by means of the recovery of DCT-based

real-value waveforms. This method is quite effective when dealing with linear phase

shift, but may not be spectrally efficient in case of random phase noise, as it requires

21
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a large number of pilot signals for adequate performance. More importantly, in case

of fading channels, the effectiveness of this method has never been examined.

Frequency domain methods requires post-DFT processing which corrects CPE

and/or ICI. This proves to be feasible in practice regardless of pilot patterns or channel

environments. Hence, it is of our interest to study the performance of various methods

in the frequency domain. A conventional frequency domain method, as introduced

in [13,23] and references therein, directly compensates for CPE or its phase. However,

this method has some drawback as it neglects ICI, the important contribution of phase

noise. Therefore, it is possible to further suppress phase noise by considering both

the CPE and ICI.

This chapter is organized as follows. Section 3.2 presents the conventional CPE

correction oCPEC) method, which is then extended to a new phase noise suppression

oPNS) algorithm in Section 3.3 by estimating CPE and approximating ICI as additive

noise to achieve the minimum mean square error (MMSE) for signal detection. In

Section 3.4, an alternative approach is proposed, which, with the estimates of phase

noise parameters, directly compute the values of both CPE and ICI and cancel them

accordingly. Numerical results are presented in Section 3.3 and 3.4 to demonstrate

the effectiveness of the proposed methods in comparison to the conventional methods.

This chapter is concluded in Section 3.5.

3.2 Conventional CPE Correction (oCPEC) Method

The conventional CPE correction oCPEC) method was introduced in [23] where the

phase of CPE is estimated and compensated for. This approach is feasible since

for small phase noise, the effect of CPE amplitude can thus be neglected as it is

approximately unity. Nevertheless, as reported in [20], directly estimating CPE saves

computational complexity needed for extracting its phase from pilot signals, and

results in an improved estimation accuracy and hence better receiver performance.



Let 71,ok) denote ICI plus AWGN noise term

of o1.10). Equation o1.10) is then rewritten as

In the sequel, we use the estimate of coo0) obtained by [20]

where P represents the set of NN pilot signals. Channel fading gain h(k) can be

obtained via OFDM channel estimation [25] using the preamble of the transmitted

block,

with coo) denoting CPE from the preamble symbol. Equation (3.3) implies that, in

the presence of phase noise, channel estimation actually gives h(k), the estimate' of

h(k)co (0), indicating an increase of channel estimation errors. Correspondingly, when

using the channel estimate i(k) to estimate cm (0) in (3.2), it yields the estimate of

c,„o0)/c0 (0), which compensates, to some extent, for extra channel estimation errors

caused by phase noise. From this standpoint, CPE estimation is not only used to

correct phase rotation error, but also helps reduce extra channel estimation errors

introduced by random phase noise.

'Hereinafter, the superscript " is used to indicate the estimation results.
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The detected data bit rio(k) can be obtained from the CPE-corrected signal

3.3 Phase Noise Suppression (PNS) Algorithm

The performance improvement of the CPEC method is limited as it uses CPE only.

As shown in (1.10), the performance loss of OFDM systems is caused by CPE and

ICI, both of which should be considered for phase noise mitigation. Accordingly, this

approach would yield better performance in comparison to OPEC. In other words,

we may choose to minimize the mean square error (MSE) of the detected signal or

equivalently, use the MMSE equalization technique [20], which suppresses both CPE

and ICI caused by phase noise. This algorithm is termed as phase noise suppression

(PNS).

The MMSE criterion requires to find an optimal coefficient gm (k) as follows

indicates the sum of ICI and AWGN noise. For small phase noise, the ICI term can

be approximated as a Gaussian random with zero mean and variance shown in (2.18)

equal to 'N41". Since ICI is independent of AWGN noise nm(k), lim(k) in (3.1) is also

Gaussian distributed with zero mean and variance
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Given the knowledge of cm (0) and h(k), the optimal g(k), in terms of (3.5)

and (1.10), is shown to be

which gives the data decision

Since OFDM channel estimation has been considered in many papers, e.g., [25]

and [26], channel frequency response {h(k)} kN  1 are assumed known in this dissertation.

However, for the complete solution of (3.7), the CPE term c„,(0) has to be estimated.

Minimizing the cost function

estimate

where Sp denotes the set of pilot signals.

The ICI plus noise energy in (3.7) can be pre-calculated using (2.5) if we have a

prior knowledge of both AWGN and phase noise statistics. In this case, the optimal

coefficient g(k) is obtained towards data equalization. However, in case of unknown

noise statistics, it is required to estimate the ICI plus AWGN noise energy from

received signals. The approximation of (2.18) illustrates that, for small phase noise,

ICI energy is constant within a symbol, which implies that we can possibly estimate

the ICI plus noise energy using pilot subcarriers. If these specific pilot subcarriers

carry null data at the transmitter, we can readily see from (1.10) that, after DFT

at the receiver, we will find nothing except ICI plus noise on these subcarriers. This
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suggests the possible usage of these subcarriers for ICI plus noise energy estimation.

The estimator is therefore expressed by

where Si- and N1 denote the set and number of these pilot subcarriers, respectively,

used for energy estimation. Note that Si is different from pilot set Sp which is used

for CPE correction and can not be null. It is worth mentioning that transmitting

extra pilot signals for ICI plus noise energy estimation will decrease the spectral

efficiency, and it is not suitable especially when bandwidth is precious, e.g., IEEE

802.11a standard [4].

3.3.1 Practical Considerations for PNS Algorithm

It's important to examine how to implement the PNS algorithm and what performance

it would present. Naturally for this, the IEEE 802.11a WLAN standard is of interest

since it is based on OFDM technique.

The data structure of IEEE 802.11a standard is shown in Fig. 3.1. In this

standard, the data packet consists of the preamble and the data. The preamble

includes short and long pilots which are used, e.g., for synchronization, frequency

offset and channel estimation, while the data part of the packet is OFDM modulated.

Each OFDM data symbol contains B = 64 subcarrier signals, including the data set

SD with ND = 48 subcarrier signals, the pilot set Sp with Bp = 4 subcarrier signals,

and the null set SN with NN = 12 subcarrier signals. It is assumed that channel

frequency response is known within the whole packet as it can be estimated using the

preamble.

It has been shown in (2.5) that the self-correlation (or the energy) of the ICI

term is not a function of time m or the subcarrier index k. For small phase noise



Figure 3.1 The data structure of IEEE 802.11a LANs

approximation, this expression is further simplified as (2.18). However, considering

the existing null subcarriers on each OFDM symbol of IEEE 802.11a standard, (2.18)

is modified to [20]

And so is the variance of rini (k) in (3.6), namely

Due to the fact that in IEEE 802.11a standard, only Np = 4 pilots are available

for the CPE estimator (3.9), one may argue that (3.9) may not be accurate with so

few numbers of pilot symbols. In order to improve the estimation accuracy, initially

cm (0) is estimated using (3.9); then, after equalization and detection, decision is fed

back for further enhancement of the performance of (3.9) using2

2 The estimator of PNS is indicated by the superscript 6 in order to distinguish it from that
of CPEC, where the estimation result is denoted by C.
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where 7 is the forgetting factor, and e rn (0) and Cm (0) take the same form as (3.9),

but use the pilot set Sp and the data set SD from decision feedback, respectively.

Note that the ICI energy given in (3.12) can be different for k E SN, i.e., for

the null subcarriers which acts as the guard band, since the analog bandpass filter

before KF down conversion will color the AWGN noise within these subcarriers, but

would hardly affect the ICI term caused by phase noise within these subcarriers.

This is because phase noise occurs mainly due to the receiver oscillator after KF

down conversion, rather than that caused by the transmitter oscillator.

Remark 1 The analog filter increases the estimation error of the estimator (3.10).

The question is that if this extra estimation error is tolerable? First, the ICI plus

noise energy, derived in (3.10), is independent of subcarrier index; Second, in spite

of the colored noise due to the analog bandpass filter, for sufficiently high signal to

noise ratio (SNK), the ICI term at the null subcarriers is dominant over the noise.

Therefore, despite the existence of the colored noise, the estimation of ICI plus noise

energy of null subcarriers can be used to approximate that of data subcarriers and

hence used in the MMSE equalizer of (3.7).

Based on the discussion above, the proposed post-FFT PNS algorithm is described

by the following steps:

1) Obtain the estimate of CPE by (3.9) as well as the estimate of ICI plus noise

energy by (3.10);

2) Use (3.7) to calculate the equalizer coefficients for N samples of each symbol,

where the unknown parameters are replaced by the estimated values from step 1;

3)Use (3.8) to get the estimated signals for data detection. Decision feedback

is used to update the estimate of by implementing (3.13).

4)Kepeat steps 1-3 for all data symbols.



3.3.2 Normalized MMSE (NMMSE) for PNS Algorithm

In terms of (3.7), the estimate of the desired signal can be written as
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removed the conditions on c,„(0) and h(k). It gives rise to the average unconditional

NMMSE. The independence between c m (0) and h(k) was assumed in deriving (3.16).

The numerator in (3.16) gives the energy of ICI plus AWGN noise while the denominator

indicates the entire energy of the received signal after DFT. Moreover, for the PNS

scheme, the assumption of small phase noise and large N results in (2.17) and (2.18),

which further yield
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Equation (3.17) suggests that, in case of small phase noise, NMMSE can be

expressed as a simple function of the phase noise linewidth to subcarrier spacing ratio

fiNIR and SNK 7 s . It further shows that either decreasing 3NIR or increasing 75

will reduce the residual MMSE and subsequently enhance receiver performance. This

conclusion coincides with what have been found in Section 2.3. Fig. 3.2 illustrates

how NMMSE is related to NIR and ys. With smaller 3NIR which indicates better

frequency and phase synchronization, SNK has a dominant effect on NMMSE. In case

NIR is of the order of 10' or less, NMMSE decreases almost linearly with SNK,

and the effects of phase noise is negligible. Larger $3NIR, however, results in more

errors that overwhelms the positive effects of high SNK over NMMSE, as indicated

by the inevitable error floor in Fig. 3.2 even after phase noise mitigation.

3.3.3 Numerical Results

The PNS algorithm is evaluated for a normalized frequency-selective Kayleigh fading

channel by Monte Carlo trials. Six multiple radio paths have been chosen for simulation.

16 QAM, which is more sensitive to phase noise than MPSK, is used in the simulation

to evaluate the performance of the PNS algorithm under the modulation. Phase noise

is simulated using an independent Gaussian increment between adjacent subcarrier

signals as proposed in [16]. Channel impulse response remains static within an

OFDM block (or frame) but varies independently from block to block. In computer

simulations, two cases are studied as shown in Table 3.1.

In case 1, pilots are required for both CPE and ICI and evenly interpolated into

OFDM symbols, while case 2, which is based on IEEE 802.11a standard, has no pilots



31

Figure 3.2 Normalized MMSE for a 1024-subcarrier system with different SIR
values

for ICI. Decision feedback is only required in case 2. The theoretical values of cm (0)

and all based on (1.11) and (3.12) are calculated to examine the effectiveness of the

proposed algorithm. Simulations results with the PNS algorithm are compared with

the theoretical calculation as well as with the result obtained for the CPE estimation

algorithm of [23].

Fig. 3.3-3.4 obtained with case 1 show the catastrophic effects of phase noise on

SEK performance when no correction is applied. The CPE estimation and correction

helps improve the system performance, but exhibits an error floor at high SNRs as it

does not consider ICI. The proposed PNS algorithm outperforms the CPE estimation

scheme, both in general OFDM and IEEE 802.11a systems, by considering ICI and

minimizing the overall errors. The theoretical curve indicated in this figure is based

on the theoretical calculation of alci±„,i„ with a prior knowledge of AWGN and

phase noise statistics. It is worth mentioning that the simulation result of the PNS

algorithm coincides very well with the theoretical calculation (both curves are almost
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Figure 3.3 PNS performance versus phase noise variance for a general 1024-
subcarrier OFDM system, with 16QAM, 270T = 0.0384 rad2

Figure 3.4 PNS performance for IEEE 802.11a WLANs, with 16QAM and 2ir/3T =
0.0384 raS2



Table 3.1 Simulation parameters for the PNS algorithm

33

identical). This suggests the effectiveness and capability of the proposed scheme in a

general OFDM system.

Fig. 3.5 depicts the SEK performance of the proposed scheme as a function

of phase noise variance, showing that it always outperforms OPEC. Moreover, the

PNS scheme has approximately the same performance as no-phase-noise case with

phase noise variance less than 10 -2 . Since such a requirement for small phase noise

can practically be met in many cases, the proposed PNS scheme is thus suitable for

practical applications.

Fig. 3.5-3.6 suggest that the proposed PNS algorithm always outperforms the

CPEC for different phase noise levels. It's well known that the variance of phase noise

is usually much less than unity in many applications. From these figures, when the

phase noise variance decreases, the PNS performance approaches the non-phase-noise

case by minimizing the overall mean square error. It has the similar performance

with the non-phase-noise case when the phase noise variance is less than 10 -3 .

3.4 Simultaneous CPE and ICI Correction (SCIC)

3.4.1 Maximum-Likelihood Estimation (MLE) of cm (p)

The previous section has shown that, PNS improves the system performance by

suppressing both interference and AWGN noise using MMSE technique. As we



Figure 3.5 PNS performance versus phase noise variance for a general 1024-
subcarrier OFDM system, with 16QAM

Figure 3.6 PNS performance versus phase noise variance for IEEE 802.11a WLANs,
with 16QAM
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learned from DS-CDMA systems, parallel interference cancellation (PIC) or sucessive

interference cancellation (SIC) performs better than MMSE when dealing with interference.

Hence, rather than suppressing interference, a new method is proposed to estimate

CPE and ICI simultaneously and cancel them accordingly. The basic idea is to obtain

the estimates of {c, (p)}pN=01 , which are the corresponding DFT output of time-domain

phase noise {ei4'm (11) } 7,N-01 , serving as the weighting coefficients of CPE and ICI as in

(1.10). The question is that how to estimate the entire set of {c,,,,(p)}pN_-01 in order

to compute and remove both CPE and ICI. This method is termed as simultaneous

CPE and ICI correction (SCIC).

. 	 ,
1. Note that any wk with k 0 is a left circular shift of Iw o .

Our aim is to recover the weighting coefficient vector c from the received

signal vector y. Given the knowledge of channel and transmitted signals, W is

deterministic and known. Moreover, conditioned on c, y is an N-dimensional Gaussian

random variable vector with mean We and covariance matrix (3-2 I with I denoting
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identity matrix. Its conditional probability distribution function is given by p (Y c) =

In order to estimate vector c, we choose the MLE

method, which asymptotically achieves Cramer-Kao lower bound (CKLB) by minimizing

the conditional probability distribution function p (3' c) [27]. In additive white Gaussian

noise n, this is equivalent to minimizing the squared Euclidean distance

To solve (3.19), we have to know the matrix W, which requires the knowledge

of the channel and the transmitted signals. The former can be estimated using the

preamble of each block, as discussed in Section 1.3.3. Since it is impractical to use all

transmitted subcarrier signals as pilots, the tentative decision output '±o (k) of (3.4)

after CPEC can be taken as the approximation of transmitted signals towards the

solution of (3.19). Finally, we obtain the estimate of W, whose entries are replaced by

ak = 1,2 (k)h,(k). Note that with random channel fading gains and carefully chosen

pilot patterns, W may not be singular. Therefore the inverse of W or WHW is

feasible.
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Therefore, subtracting ICI from the received signal leads to

The "ICI-cancelled" signal vector Bs is then compensated for its CPE error and

yields the phase noise mitigated signals

where `6„,(0), the first entry of vector '6, denotes the estimate of CPE. After

phase noise mitigation as described in (3.22), data are used for channel equalization

and detection.

3.4.2 Computation Complexity Reduction

The method proposed in this section requires the inverse operation of W, hence it

can be more complex than CPEC or PNS. Keduction of computational complexity

can be achieved by estimating only a subset of c, e.g., the first L entries with L < N,

denoted by cr . In this case, the estimated c ry still has the same form of (3.19), namely,

where NV, is an N x L matrix which comprises L column vectors of W corresponding

to vector c,.. Accordingly, computational complexity is reduced. It follows that

the performance with this simplified version degrades in comparison to the original

approach due to the trade-off between performance and computational efficiency.

Nevertheless, we show via simulation that the resultant performance loss is quite
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3.4.3 Numerical Results

Numerical results given in this section demonstrate the effectiveness of the new

approach. An encoded OFDM system is chosen with symbol size N = 64. A Kayleigh

fading channel consisting of six multiple paths is assumed in the simulation. To

eliminate IASI caused by channel frequency selectivity, a cyclic prefix, larger than

channel maximum delay spread, is added to the beginning of each OFDM symbol.

As usual, the first symbol of each OFDM block is used for channel estimation. Each

subcarrier signal is 16-QAM modulated. NN pilot subcarrier signals are evenly

distributed within a symbol for conventional CPEC in (3.2).

Figure 3.7 Comparison between the actual and estimated amplitudes of
1-

{Cm (p)} 0p= , with SNK=10dB, NN = 4.

Simulation results are presented in Fig. 3.7-3.10, which provide a clear insight

into the role of phase noise on SER performance and the effectiveness of different

phase noise mitigation approaches.

We show in Fig. 3.7-3.8 the actual versus estimated values of parameters,



the energy of ICI. Fig. 3.7 suggests that, both curves of the actual and estimated

CPE (or c,„(0)), stay close, while the amplitudes of estimated cm (n) ,with n E [10, 60],

are of the order of 10 -4 , in comparison to their actual values of the order of 10 -3 ,

exhibiting some estimation errors.

Fig. 3.8 shows that, for different phase noise levels, both real and imaginary

parts of the estimated CPE consistently match the actual values. The energy of the

estimated ICI, based on the weighting coefficients {cm(P)}pNfil, approaches that of

the actual value for phase noise variance less than 10 -1 . For large phase noise, the

estimation accuracy is no longer guaranteed. However, as in practice the phase noise

variance does not exceed 10 -1 , this suggests the robustness of the proposed method

to phase noise.

Fig. 3.9 shows the SEK performance as a function of SNR when the number of

pilots Bp  is equal to 4 (as in IEEE 802.11a ALAN standard [4]). Not surprisingly,

the proposed method, which directly corrects CPE and cancel ICI, significantly



Figure 3.9 SEK performance with phase noise variance equal to 0.01 and number
of pilots p = 4.

Figure 3.10 SEK performance versus SNK with different number of pilots A, , where
L = N
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improves the receiver performance. It can be seen that it is even better than PNS

for high SNRs. Parameter settings L = B/2 and L = B/4 simplify the proposed

method and significantly reduce the computational complexity, but still lead to some

performance improvement comparable to PNS. Therefore, the scheme presented in

this dissertation, with some modification, is highly competent with respect to computation

and performance, and therefore is a good alternative to our previous PNS method.

Ae also note from Fig. 3.9 that, there is still some performance gap between

this new approach and no-phase-noise case. Therefore, it is interesting to examine

the performance of this method with different number of pilots B p . Fig. 3.10 shows

that, when number of pilots Bp increases, the performance gap decreases, indicating

some performance improvement. Ahereas, this improvement is never significant even

if we use half of bandwidth as pilots, i.e., Bp = 32. This is mainly because Bp = 4

leaves quite small performance gap (up to 0.5 dB) between the proposed method

and no-phase-noise case. Hence, Bp = 4 (occupying 6.25% bandwidth) is enough in

all cases, implying the high spectral efficiency of this new approach with sufficient

performance.

3.5 Conclusions

OFDM suffers severe performance degradation in the presence of phase noise. Different

methods have been proposed in the literature to correct phase noise either in the

time domain or in the frequency domain. Time-domain approaches usually have

some impractical assumptions on pilot patterns or channel environments, making

frequency-domain approaches preferable in practice. Conventional frequency-domain

methods which emphasize CPE correction was further enhanced by the PNS algorithm

proposed in [20] using the estimate of ICI plus noise energy to minimize the mean

square error.
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The theoretical analysis has been provided which is followed by the implementations

of PNS algorithm in IEEE 802.11a ALLAN standard. The theoretical analysis has

been further confirmed by computer simulations.

To complement the work in [20], in the presence of channel estimation errors,

an alternative approach has been proposed for simultaneous CPE and ICI correction,

which first estimates a set of weighting coefficients that are the DFT of time-domain

phase noise; then use them to correct and cancel CPE and ICI respectively. In order

to reduce computational complexity, the proposed method has further been simplified

by estimating only a subset of those coefficients. Numerical results have been provided

to demonstrate the potential of this new approach and its simplified version with the

performance close to PNS.

When comparing two proposed phase noise mitigation methods, namely, PNS

and simultaneous CPE and ICI cancellation method, we notice that both methods

have the same spectral efficiency. The advantage of the simultaneous CPE and ICI

cancellation method is its performance improvement over PNS, as it estimates each

weighting coefficients to calculate and cancel CPE and ICI. while PNS only treats

ICI as additive noise. The advantage of PNS, however, is its lower computational

complexity with little performance loss in comparison to the simultaneous CPE and

ICI cancellation method. Even with the simplified version, the computation of the

simultaneous CPE and ICI cancellation method is still more complex than that of

PNS. This implies that PNS is quite simple yet effective which makes it very attractive

for most real-time applications since it aims to minimizes the mean square error and

has the performance close to the no-phase-noise case. On the other hand, the proposed

method is suitable for the cases where performance is very crucial while computational

cost is less important.



CHAPTER 4

MULTIPLE PHASE NOISE ANALYSIS AND MITIGATION IN

MULTI-USER OFDM SYSTEMS

4.1 Introduction

The effects of phase noise on OFDM systems have been discussed in the previous

chapters. Although it was not explicitly stated, the previous analysis and the proposed

schemes are particularly applied to the single user case with single phase noise. In

a multi-user OFDM system, e.g., multi-carrier code division multiple access (MC-

CDMA), or orthogonal frequency division multiple access (OFDMA), the simultaneous

access of multiple users gives rise to multiple phase noise (MPN), which is of interest.

As with the single phase noise case, this problem has two aspects: its effects on the

multi-user systems, and what is needed for its mitigation.

Ae begin our analysis with a MC-CDMA system, which, by implementing

OFDM technique, is also sensitive to phase noise [22]. To the best of this author's

knowledge, past work that has been done on phase noise has never considered MPN.

However, this phenomenon occurs in a multiple access environment. Therefore, we

analyze, in the chapter, the effects of MPN on MC-CDMA systems and derive the

closed-form BEK expression with correlated channel fading. Following the understandings

of MPN, we discuss its mitigation in a multiple access environment and propose a

new MPN correction scheme.

The organization of this chapter is as follows. Section 4.2 gives the MC-CDMA

system model with MPN over a correlated fading channel, which is followed by the

derivation of the closed-form BER expression. Numerical results are provided to

further explain the analytical results we obtain. MPN mitigation is discussed in

43
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Section 4.3 with multiple receive antennas. As such, spatial diversity is exploited to

help the performance of the proposed MPN mitigation method.

4.2 Effects of Multiple Phase Noise

The performance of a MC-CDMA system, in the presence of frequency offset and

phase noise, was evaluated in [22], where analytical results are given only for single-

user case and downlink MC-CDMA systems. This work was partially extended to an

uplink MC-CDMA system in [28] where only single frequency offset was considered.

Ae consider an uplink MC-CDMA system with phase noise and Kayleigh fading

environment, wherein multiple users give rise to MPN which are mutually independent

In practice, channel fading gains on different subcarriers of the same OFDM symbol

are generally correlated and thus we assume correlated fading channel throughout

this chapter. Therefore our goal is to derive an expression for average bit error rate

(BEK) of uplink MC-CDMA systems with the impact of MPN over a correlated fading

channel.

4.2.1 System Model

A time synchronous MC-CDMA system with K active users and B subcarriers is

present with BPSK modulation. Phase noise is usually caused by the oscillators

both at the transmitter and the receiver, but we will assume it to occur only at the

transmitter (mobile station) for the uplink communications, since the oscillator of

the receiver (base station) is quite stable, due to possibly higher cost [22]. Based on

the principle of MC-CDMA [29], the transmitted baseband signal for user k can be

expressed by

00 N — 1

S k (t) = E E {xk(m),,,,„u (t mTb) ei 127rfn t+4)k(t)]

m=-co n=0
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where Lk  (m) and ck,n denote the kth user's mth data bit and the nth chip of the ith

user's binary signature sequence respectively. With T6, u (t) and fn n/T6 denoting

the bit duration, the rectangular window defined on [O,Tb) and the nth subcarrier

frequency, respectively. Phase noise Ko k (t) of the kth transmitter is defined by a

continuous Brownian motion process with zero mean and variance 27fi kt with fikk
denoting the two-sided phase noise linewidth of the oscillator at the kth transmitter.

After passing through the channel, the received signal can thus be given by

where ® denotes the convolutional operation while hk (t) and n(t) denotes the kth

user's channel impulse response and the AAGN noise with zero mean and variance

urn, respectively. {hk (t)} kK  1 are assumed mutually independent for different users,

which makes sense for the uplink communications.

4.2.2 Performance Analysis

With a coherent correlation receiver, we consider the maximum ratio combining

(MKC) technique with the combing coefficients ck,n = ck,nh*kn For BPSK, the real

part of some received signal is of concern since the decision is based on it; and from

(4.2) and (4.1), after Fourier transform and MKC, we have the 0th data bit of user i
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where n  is the real AWGN noise with zero mean and variance a -212; hk,j is the Fourier

transform of hk (t), denoting the channel fading gain on the jth subcarrier of user le.

Ai denotes the desired signal of user i. /i i denotes multiple access interference (MAI)

while both 'j2 and 43 are the intercarrier interference terms (ICI), caused by MPN.

ciaois the phase of the item

In (4.3), random phase noise pk(t) of user k results in, on the nth subcarrier,

which has the mean and the autocorrelation, respectively

[221

For the sake of simplicity, we drop the time index m for the rest of this chapter as we focus
on the time epoch m = 0. For example, we write Rib (0) and aka (0) as Rib and aka, respectively.
2 Sometimes it is also termed normalized phase noise linewidth in the literature.
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(4.7) shows that the desired signal A i is a function of p i3O and rib, both of which

are random variables. p i3O is related to phase noise while r ib is a random variable

that has, for a correlated Kayleigh fading channel, the probability density function

where {A„}N-01 denote the non-zero eigenvalues of the channel covariance matrix

whose entries are denoted by R(n i ,n2 ) = 1 _ jl(ni _n2)Tmax/To , with n 1 and n2 ranging

from 0 to N — 1. r max indicates the maximum channel delay spread.

For small phase noise, the real part of pi,0 has a value close to unity and does not

vary much with O i (t), while the imaginary part is much smaller with zero mean [22].

Therefore, E = E {Ke pi3O]1 , which can be used to approximate Ke [pi3O], and

yields

2. The MAI term Iil is obtained from the same subcarriers of all the other

Ae assume that the transmitted data bits and chips of all users are all mutually

independent with zero mean and unity variance, namely, E [x k (0)xj (0)] = (5(k —

. The in-phase item I hk,i1 cos ciaoof a Kayleigh

random variable hk,i is a Gaussian random variable with zero mean and variance

U2h I 	 In terms of central limit theorem, /i i can be approximated as a Gaussian

random variable. It is quite straightforward to show that / a has zero mean, and its

variance is represented by
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which, similar to /ii , can be approximated as a Gaussian random variable with zero

mean. Aith large N, by using the following equality [9],

we obtain its variance
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where we use (4.13) as well as the conclusion in [19], that is, for a Kayleigh distributed

yield, for BPSK modulation, the signal to interference plus noise ratio (SINK) for the

ith user,

(which requires small i3iTb) lead to small a, which consequently gives better BEK

performance. In (4.19), channel correlation, reflected by the eigenvalues of channel

matrix, affects the BEK performance. Better performance can be achieved with

lower correlation levels [28]. Since we simply treated the MAI as Gaussian noise and

assumed perfect power control, we couldn't see in (4.19) each single user's interference

but all the MATs from different users as a whole.
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Ahen /3k 's are identical, and I hk,„1 / s are independent from user to user, Pb can

be simplified as Pb = Pki. Therefore the BEK of each user is the same as the average

BEK of the receiver in the uplink of an MC-CDMA system.

4.2.3 Numerical Results

To illustrate the effects of phase noise on MC-CDMA, the relationship between the

BEK and the PNLSSK from all transmitters has been depicted in Fig.4.1-4.2 using

(4.19) and (4.20).



Figure 4.2 BER vs. phase noise linewidth to subcarrier spacing ratio 3Tb, where
N=64 subcarriers, maximum channel delay spread T m = 0.1Tb , and SNK=10dB.

We have shown in o4.20) that the average BEK is a function of PNLSSKs

{fiiTb } iK_ i . Fig. 4.1 demonstrates how the BEK changes with PNLSSRs when there

are two active users with different phase noise linewidths. It can be seen that, if

any transmitter generates phase noise with high PNLSSK, it always causes severe

degradation of uplink MC-CDMA receiver performance, regardless of the performance

of other transmitters. As a result, the ICI, indicated by /2 and /3 in (4.3), accounts

for an important part of interference to the desired signal at the receiver side. This

figure suggests that the effects of phase noise can be negligible only if all transmitters

are good enough to make their PNLSSRs less than the order of 10 -2 . Consequently,

we have a stable receiver performance for this phase level. Note that the average BER

performance versus PNLSSRs for K > 2 requires R-dimensional oR > 4) plot, which

is quite hard in practice. That is why we focus on the two-user case in Fig. 4.1.
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For many users' (K 2) case, the phase noise linewidth 32's for all transmitters

are set to the same value [3 (and therefore the same PNLSSK )3Tb) in Fig. 4.2. It has

been shown in this figure that, with a fixed number of subcarriers N and the same

channel conditions, the system performs worse when number of users K increases.

As we know from (4.3) that I lkand /2 are MAT-related terms, increasing number of

users K makes larger the energy of I lkand /2, leading to the worse BER performance.

As shown in Fig. 4.2, when K is close or equal to N, number of subcarriers, MAGI

becomes such a dominant part of interference that BER changes little even with the

ICI caused by severe phase noise.

4.3 Multiple Phase Noise Mitigation

The methods for MPN mitigation could be different from system to system, depending

on the data structure or parameter settings. Nevertheless, they all have the same

principle. Therefore, it is customary to concentrate on the typical OFDM/space

division multiple access (OFDM/SDMA) approach, while the conclusions for this

system could be readily extended to other systems, such as MC-CDMA.

Space division multiple access (SDMA) is a spectrum efficient technique, which,

by implementing a receiver antenna array, provides spatial diversity allowing multiple

users to share the same spectrum, and thus significantly increase system capacity.

The signals from different users can be effectively separated by using their spatial

signatures, i.e., their unique channel transfer functions.

The combined OFDM/SDMA approach has raised a lot of interest recently

[31-34], as it appears to be excellent extension of IEEE 802.11a standard by exploiting

the advantages of both OFDM and SDMA. A typical case of the OFDM/SDMA

systems uses an array of antennas at the base station and single antenna at each

user terminal (multiple terminal transmit simultaneously), which results in a greatly

improved system capacity but keeps the cost of the user terminals low [31]. Different
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types of multi-user detectors (MUD) have been developed for OFDM/SDMA to

mitigate the interference among simultaneous users [31, 33, 34]. However, all these

methods assume perfect frequency and phase synchronization, and thus ignore the

sensitivity of OFDM to random phase noise which is caused by the fluctuation of

oscillators both at the transmitter and receiver. Even though various methods have

been proposed in the literature [20,23] to mitigate phase noise, they are suitable with

single phase noise. Hence, we propose in this chapter a correction scheme to mitigate

the multiple phase noise effects in an OFDM/SDMA approach.

The organization of this section is as follows. In Section 4.3.1, the OFDM/SDMA

system model is shown and conventional minimum mean square error (MMSE) MUD

is introduced. In Section 4.3.2, we first specify the effects of multiple phase noise on

OFDM/SDMA systems, and then propose a multiple phase noise correction (MPNC)

scheme in Section 4.3.3 to mitigate the effects of multiple phase noise. Numerical

results are presented in Section 4.3.4 to illustrate the effectiveness of the proposed

scheme.

4.3.1 OFDM/SDMA System Model

Ae consider a synchronous uplink OFDM/SDMA system with M active users with

its system model shown in Fig. 4.3. Each base station has an array of L antennas

(M < L) while several user terminals simultaneously communicate with base station.

To be cost effective, each user terminal has one single antenna. User m out of M active

users feeds incoming parallel data into length-B IDFT to obtain the time-domain data

sequence. After the insertion of cyclic prefix, data is upconverted and transmitted

through multipath fading environment. At the base station, data is received by

antenna 1 (1 = 1, 2, ..., L) and downconverted. After removing the cyclic prefix and

taking length-B DFT, we end up with the lath (k = 0, 1, N — 1) frequency-domain



where xm(k) and hml(k) denote the mth user's transmitted signal and the frequency

domain channel gain between the mth user and the lath receiver antenna respectively;

n i (k) is the zero mean AAGN noise with variance Q2 . The signal energy is equal to

unity, i.e., E [lx,(k)1 2] = 1. We assume a multipath fading channel which is time

invariant within the whole block as shown in [4].

Equation (4.21) can be rewritten using matrices as

with (.)T denoting transpose operation; Lk and Lk  take the same form of yk ; while



MUD for OFDM/SDMA has previously been discussed and different solutions

have been provided in the literature [31,32,34]. In particular, MMSE-MUD has been

known to have good performance with lower computational complexity than other

schemes. The basic idea of MMSE-MUD is to separate the signals of the simultaneous

users by MMSE linear filtering , which implicitly makes a trade-off between multiuser

interference and noise amplification [31]. Specifically, with the channel estimate ilk)
the MMSE filter is expressed by

which yields the estimate of x k  [31]

4.3.2 The Effects of Multiple Phase Noise

For the uplink OFDM/SDMA systems, multiple user terminals give rise to multiple

phase noise which behaves as a random phase factor on each time-domain signal

before DFT. To reflect the phase noise effects, the expression of (4.21) is subsequently

modified to



56

* 	 0 Eke027rk.+iom(k)where cm (n)	 with m(k) denoting the phase noise for the

mth user. Since Oni (k)'s are generated by different users, they are independent of

each other. The variance of çbm (k) is given by 27,3„,,T, where fi n, and T denote the

phase noise linewidth and the OFDM symbol duration respectively. It can be seen

from (4.24) that phase noise contributes to:

- 7

The consequences of multiple phase noise are different from that of single phase

noise. First, the CPE term c,„(0)'s varies according to index m and therefore depend

on users. They need to be obtained separately for each user. Second, the ICI

from a certain user not only affects himself, but also all the other users due to the

simultaneous access.

4.3.3 Multiple Phase Noise CorrectioL (MPNC)

In the OFDM/SDMA approach where multiple phase noise exist due to the simultaneous

access of several user terminals, multiple phase noise correction is required to recover

system performance.

Ae are concerned with medium to small phase noise levels where post-DFT

phase noise mitigation is feasible. As described in [11], CPE amounts to over 90%

phase noise energy while ICI is relatively small in comparison to CPE. That is, for

frequency-domain correction, even though considering both CPE and ICI would yield
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better result, CPE correction alone helps save the major performance loss due to

phase noise. Furthermore, spatial diversity provided by SDMA also helps the CPE

estimator performance. Therefore, multiple CPE estimation and correction, which is

different from single-phase-noise case, raises our interest.

As we have known, OFDM/SDMA channel estimation uses the preamble of

each transmitted block [K1, K2]. Aith frequency-domain channel estimation methods

developed in [K1], we can get accurate channel estimate represented by Ha . Furthermore,

CPE estimation is also necessary to mitigate the effects of multiple phase noise.

symbol to symbol due to the random phase noise, and therefore needs to be estimated

per symbol basis. With Bp pilot subcarrier signals (the pilot set termed as Sp) , for

any p E Sp, the minimization of the cost function

of CPE vector c [K5]

Equation (4.27) actually gives rise to the least-square (LS) estimate of c. As c

is invariant within an OFDM symbol [11,15], if several pilots are available within a

symbol, the estimate represented by (4.27) can be further improved by [K5]

Note that increasing the number of pilots BN will give more accurate estimation

results. However, larger NN leads to higher computational complexity and decreases
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spectral efficiency. Therefore, to choose a proper value for Np , there is always a

trade-off between performance and spectral/computational efficiency. Ae will show

by simulation that both performance and efficiency can be guaranteed by using only

a few pilots.

The estimated CPE is then applied to MMSE-MUD to yield better performance.

In particular, in terms of (4.28), the data estimate in (4.2K) is modified to [K5]

Note that in the presence of multiple phase noise, the channel estimation accuracy

is affected by the CPE of the preamble. In fact, equation (4.25) shows that, instead

of Ha, the channel estimation methods described in [K1] and [K2] actually gives the

estimate of HkC1 , where C 1 is the CPE matrix of the preamble. As a result, equation

(4.27) and (4.28) actually lead to the estimate of Cry lc. Therefore, in the presence

of multiple phase noise, its correction provided by the estimate of (4.29) is quite

necessary as:

1. it corrects the phase rotation error for all subcarrier signals within a specific

symbol;

2. it compensates for the deviation of channel estimate introduced by CPE of

the preamble C1.

From this standpoint, CPE estimation not only corrects phase noise rotation,

but also helps to correct the increased channel estimation errors due to phase noise.

4.3.4 Numerical Results

The proposed MPNC scheme is evaluated in this section for Rayleigh fading channels

by Monte Carlo trials. The OFDM data of each user are constructed based on the

IEEE 802.11a standard. However, channel coding is not used in our simulations since

we focus on symbol error rate (SER). The base station has four antennas to separate
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up to four users by SDMA. Each user occupies 2OMHz bandwidth which consists of

64 subcarriers. QPSK modulation is used in the simulation. The preamble of each

data block is designated for channel estimation. The number of pilots for MPNC is

not fixed (e.g., four pilots per data symbol in IEEE8O2.lla standard [4]), but was

changed in some of our simulations to evaluate its effect on performance and find its

most suitable value. The length of cyclic prefix is always larger than channel delay

spread. The simulation parameters is summarized in Table 4.1.

Fig. 4.4 shows the SER performance of MPNC in comparison to no-phase-noise

and no-phase-noise-correction cases. Four pilots are used in this simulation, i.e.,

Bp = 4. We can see that multiple phase noise results in large impairment of system

performance such that phase noise correction must be considered. On the other hand,

the proposed MPNC scheme results in the performance close to no-phase-noise case.

It gives approximately O-2 dB performance loss compared with no-phase noise case,

when the number of users is less than the number of receiver antennas. However,

performance loss increases if all users simultaneously communicate with the base

station, e.g., there is about 5dB loss for the four-user case in Fig. 4.4. This implies

that more users introduces more multiuser interference, which affects the accuracy of

CPE estimation.
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Figure 4.4 SEK versus SNK, 1-4 simultaneous users with PN variance 1O -2 , pilot
number Be = 4

Figure 4.5 SEK versus PN variance levels, 1-4 simultaneous users with SNR= 2OdB,
pilot number Nee = 4
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Fig. 4.5 demonstrates how the performance of the proposed scheme changes

with phase noise levels. It shows that when phase noise variance is greater than

1O -3 , the OFDM/SDMA receiver, without phase noise mitigation, suffers remarkable

performance degradation. However, the proposed MPNC provides significant performance

improvement over no-phase-noise-correction case. This is quite adequate as the aim

of the proposed scheme is to correct medium to small phase noise, i.e., for phase noise

variance less than 1O -1 .

For the phase noise variance range [1O -3 ,1O -1 ), the illustrated SEK performance

is satisfactory when working in the combined OFDM/SDMA approach. In fact, this

working range [1O -3 ,1O -1 ) of MPNC fits the practical consideration of phase noise

levels in any OFDM systems.

Ahen phase noise variance is less than 1O -3 , we notice an the error floor for

both three-user and four-user cases due to multiple user interference. Ahereas, as

phase noise under this situation is so small, one can hardly see the effects of multiple

phase noise. Hence, the performance of the no-phase-noise-correction case approaches

that of no-phase-noise case. In other words, when phase noise variance is less than

1O -3 , it is so small that there even necessary to take the proposed MPNC or any

other schemes to correct multiple phase noise for this phase noise variance range.

Fig. 4.6-4.7 illustrate how the number of pilots p affects the performance

of the MPNC scheme when the number of users is 1/2 and K/4 respectively. It is

quite straightforward that more pilots give rise to a better performance. However,

we would like to know how many pilots we need to guarantee a certain performance

level while keeping the computational complexity as low as possible. As can be seen

in these two figures, the performance differences are quite noticeable for the value of

p changing from 1 to 8, but hard to tell when p is greater than or equal to 8. This

is true for one to four users. Therefore, p = 8 gives a good trade-off between good



62

Figure 4.6 SER versus SNR, 1-2 simultaneous users with PN variance 1O-2

Figure 4.7 SEK versus SNK, 3-4 simultaneous users with PN variance 1O -2
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performance and low computational complexity. 12.5% spectrum is occupied for the

pilot allocation.

4.4 CoLclusioLs

The BEK performance of an uplink MC-CDMA system has been analyzed in the

presence of multiple phase noise and correlated Rayleigh fading environments. Both

multiple access interference oMAI) and inter-carrier interference oICI) are considered

in this chapter. The BEK expression has been determined to depict system performance.

For a multiple access environment, if any transmitter has the phase noise linewidth

greater than 1O -2 , the ICI becomes so noticeable at the receiver side that the MC-

CDMA system performance suffers severe degradation due to ICI. However, multiple

access causes the major interference to a MC-CDMA system with the phase noise

linewidth of all transmitters below 1O -2 . As the number of users increases, the MAI

accounts for more interference, leading to the worse BEK performance. In summary, a

small number of subcarriers and users, as well as small PNLSSRs for all transmitters,

are preferred for good receiver performance.

Ahile several methods have been developed in the literature to correct single

phase noise, they do not apply for systems with multiple phase noise, such as OFDM/SDMA.

In this chapter, a new multiple phase noise correction scheme has been proposed to

mitigate the effects of multiple phase noise originated from multiple user terminals

that simultaneously communicate in the uplink OFDM/SDMA systems. This scheme

aims to compensate for CPE, the major effect of phase noise for medium to low

phase noise levels where phase noise correction is possible. The proposed scheme

effectively mitigates the effects of multiple phase noise and significantly improves

the performance of OFDM/SDMA systems. Aith few pilots involved per user, the

proposed scheme presents quite a satisfactory performance. Numerical results show

the effectiveness of MPNC when dealing with multiple phase noise in the uplink
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OFDM/SDMA systems. Moreover, the MPNC scheme is applicable and stable within

a wide range of phase noise levels, which shows its potential in practical applications.



CHAPTER 5

GENERALIZED PHASE NOISE MITIGATION APPROACHES

5.1 ILtroductioL

As we discussed earlier, phase noise mitigation could be done in the time domain or

in the frequency domain respectively. The frequency domain approach proves to be

more practical and we have proposed several mitigation methods.

In the presence of phase noise, each received subcarrier signal oexcluding AWGN

noise) is actually the weighted sum of all transmitted signals multiplied by the

corresponding channel response in the frequency domain. Moreover, CPE and ICI are

both functions of those weighting coefficients, so that, once we obtain those weighting

coefficients, phase noise can be readily mitigated. Based on this observation, two

general approaches are proposed to estimate these phase noise parameters. It proves

that the conventional approaches, either in the time domain, or in the frequency

domain, can be readily obtained from our new methods with some simple approximation

or orthogonal transform. After the phase noise parameters are estimated, different

implementation methods are further discussed for phase noise mitigation. Numerical

results are also provided to illustrate the effectiveness of the proposed schemes.

This chapter is organized as follows. The new approaches for phase noise

mitigation are proposed in Section 5.2, and performance analysis is presented in

Section 5.K. Section 5.4 gives the numerical results to demonstrate the effectiveness

of the proposed schemes compared with others. Section 5.5 concludes this chapter.

5.2 Phase Noise Mitigation

5.2.1 Phase Noise Vector EstimatioL

FrequeLcy DomaiL Parameters As discussed in the previous chapter, equation

oK.18), which gives

65
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depicts the frequency-domain vector c resulting from time-domain phase noise. Furthermore,

it is shown that

The frequency domain approach of phase noise mitigation is to

find the vector c and compensate for it.

Time Domain Parameters Equation o1.ll) can be rewritten in matrix form as

Equation o5.5) shows that, vector t is simply the FFT output of the desired

vector c. Therefore, once we obtain the frequency domain vector c using some
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estimator, we can get the time domain vector t. This indicates that these two vectors

are equivalent from the estimation point of view. Hereinafter, we will focus on

different estimation techniques in the frequency domain, since the extension of those

methods to the time domain is quite straightforward using o5.5).

5.2.2 Maximum Likelihood EstimatioL (MLE)

For a Gaussian random variable shown in o5.1), the maximum likelihood estimation

oNILE) is a method that asymptotically achieves Cramer-Rao lower bound oCRLB)

[27]. This phase noise estimation method was first introduced by us in [K6] for phase

noise estimation and was termed as simultaneous CPE and ICI correction (SCIC) in

Section K.4, wherein the MLE of frequency-domain vector c is derived as,

If we consider a subset of c, say, only the first element co , o5.6) reduces to CPEC introduced in [2K]

For the time domain approach, o5.5) simply gives

Note that the time domain approach proposed in [24] actually leads to the same

estimate as o5.7) when the number of pilots equals the number of subcarriers B. In

other words, o5.6) and the approach in [24] indicate the same estimator from the

frequency domain and time domain point of view, respectively.

5.2.3 Linear MiLimum MeaL Square Error EstimatioL (LMMSEE)

MLE does not include the effect of AAGN noise in the estimator. For the received

signals in o5.1), the linear minimum mean square error estimation oLMMSEE), which



Substituting o5.9) and o5.1O) into o5.8) yields

Likewise, o5.5) give the time-domain estimator

As can be seen in o5.12), the LMMSEE requires the statistics of phase noise as

well as AWGN noise. In other words, the LMMSEE depends on phase noise linewidth

0, AAGN noise variance a2 . Similarly, PNS algorithm in [2O] is just a special case of

the estimator in o5.ll) by only estimating the first element of c, c o , and approximating

the ICI as noise.

Remark 1 We show that conventional frequency-domain approaches are the special

cases of our methods. Kewrite (5.1) as



69

with Al denoting the vector A without the first

element. This data expression implies that ICI is approximated as a Gaussian random

variable. This is true for small phase noise and larce number of subcarrier B. In this

case, the CPE factor co is the major consequence of phase noise. Therefore, it may

be sufficient to estimate co using the ML method [231, or usinc the MMSE method for

better performance [20]. This succests that conventional frequency domain methods,

such as those in [23] and [20), are just the simplifications of the methods proposed in

the paper by estimatinc a subset of the weichtinc coefficient vector. The advantace of

these simplified approaches is the reduction of computational complexity.

Remark 2 Conventional time-domain approaches, such as the one proposed in NJ

cive the correspondinc time-domain expression of our estimated vector by applying

IDFT to both sides of (5.6) or (5.11), as shown in (5.7) or (5.12). However, it is

worth mentioninc that [24) claims that, usinc orthoconal transforms, e.c., DFT or

DCT, the N -element phase noise vector t in the time domain could be obtained from

L parameters, which are estimated usinc M (L < M < N) pilot sicnals. Nevertheless,

it is readily understood that there is no cuarantee that such a orthoconal transform,

from L x 1 vector to B x 1 vector with L < B, does always exist, when both

vectors are deterministic. In other words, some approximation may be necessary

to achieve such a transform in some situations. Therefore, L can not be much less

than N in order to make the approximation applicable. On the other hand, since the

condition L < M < N must be satisfied, a larce number of pilots M is necessary

which significantly decreases spectral efficiency, especially when random phase noise

is presented which requires symbol-by-symbol phase noise mitication.

Alternatively, our approaches have hich spectral efficiency by takinc advantage of

decision feedback. Moreover, unlike 12.4] where only the performance of AWGN channel

is verified, we explicitly deals with fadinc channels.
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5.2.4 CompleLity ReductioL

The MLE and LMMSEE methods require the inversion of the matrix W, which, in

general, needs the major computations in the magnitude B3 . Ae extend circulant

matrix theory in [K7] and define W as a shift-backward circulate matrix, which means

each row of W is the left circular shift of the previous row, and uniquely determined

by its first row wo  = a0 a l • • • aN_ i •

It is shown that W can be decomposed as osee Appendix C)

where F is the DFT matrix and V is a diagonal matrix defined in oC.8). The inversion

of W is then given by

where we used P -1 = P with respect to its definition in oC.K). Substituting o5.15)

into the MLE o5.6) and the LMMSEE o5.ll) gives rise to
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Note that,

1. The inversion of the diagonal matrix V is quite simple;

2. P is a simple permutation matrix;

K. Fourier transform matrix F H or F can be implemented with fast algorithm;

Therefore, the computational complexity is significantly reduced with respect

to the inversion of W. It is worth mentioning that, the LMMSE needs the matrix

inversion of the term R, + o-2PFH (VHF) FP.Even though the computational

complexity may be further reduced using its symmetric structure, it's still more

complex than the MLE.

5.2.5 Phase Noise MitigatioL

Phase noise parameters have been estimated using either MLE or LMMSE approach.

Therefore, we need to consider the implementations of these estimates. Two methods

are proposed in this section for phase noise mitigation: decorrelator and interference

canceler.

DeAorrelator Kewrite (5.1) as



Similar to W, C is a circulant matrix determined by the estimated phase noise

vector A given in (5.6) or (5.ll). each row of C has the identical elements as the

previous row, but with one-element circular shift to the right. Then, applying the

decorrelation method to (5.2O), the estimated data is given by

The inversion of the N x B matrix C -1 requires the computational complexity

of 0 (N3 ). This may not be acceptable in many cases. Whereas, we notice that the

circulant matrix C can be readily diagonalized by [37]

It's interesting to see that, in fact, the diagonal elements of A are just the IDFT

of A, i.e., A 11\1diag (ViA) .

Therefore, in terms of (5.23), (5.22) yields

Equation (5.24) only involves the matrix multiplication and DFT computations.

It's quite straightforward to see that the computational complexity are significantly

reduced.
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ILterfereLAe CanAeler As shown in (5.1K), the received data can be expressed by

where W1 denotes the matrix W without the first column vector. Then, the estimated

data is given by

The methods has less computational complexity than the decorrelator, due to

the fact that it does not require the inversion of matrix or even DFT.

5.2.6 PraAtiAal CoLsideratioLs

Both ML and LMMSE techniques proposed in the paper requires a priori knowledge

of matrix W, which is determined by the transmitted signals and channel gains in

the frequency domain. In other words, it is necessary to know:

1. Channel gains in the frequency domain;

2. All transmitted signals within an OFDM symbol.

In a high rate OFDM system, usually channel varies little within a data block.

Therefore, all subcarriers of the preamble of each block is used for channel estimation

as in [4]. Pilot assisted channel estimation is therefore feasible [25,261]. These channel

estimates are accurate enough for our purpose.

Transmitted signals can be obtained from the tentative data, i.e., the initial

estimate of data signals. These initial estimates can be accomplished by applying

one of conventional CPE correction methods [2O,2K], and channel equalization to the

received signals in the frequency domain.
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Finally, the estimated channel and the tentative data apply to (5.6) and (5.ll),

leading to phase noise mitigation.

5.3 PerformanAe ALalysis

In this section, the performance of different estimation methods on system performance

is discussed. the frequency-domain approach is of concern since the extension to the

time domain is quite straightforward.

5.3.1 General Comparisons

1. It's well known that LMMSEE has a better performance than MLE by minimizing

the mean square error of the estimation result. However, LMMSEE requires

a prior knowledge of phase noise linewidth i3 and AWGN noise variance a 2 .

Aithout them, MLE should be a better choice;

2. Both methods require the inversion of matrix which requires the computational

complexity 0 (B3 ), but some mathematical methods, such as fast Fourier transform

(FFT) algorithm, can be used to reduce the complexity. On the other hand,

LMMSEE is more complex than MLE by requiring the extra computations for

we notice that, although phase noise O m (n)

is non-stationary, the resulting random variable eioni(n), as shown in (1.7), is

stationary, so is Cc . Hence, once we know phase noise linewidth /3, DFT length

N and OFDM symbol period T, R, can be pre-computed and stored for the

processing of data.

This implies that, for high SNRs, the performance of these two methods will

stay close.
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5.3.2 Computational Complexity

Ae first keep in mind that each complex multiplication is equivalent to four real

multiplications plus two real additions, and each complex addition is equivalent to

two real additions.

MLE This technique needs the inversion of W, which requires computational complexity

0 (N3 ) . By taking advantage of the properties of the circulant matrix, we successfully

factorize W into four matrices with one being diagonal and the rest being unitary

(some are DFT matrices). Since the inversion of a diagonal matrix is very straightforward,

and the inversion of unitary matrices in (5.16) is also simple (P' = P, and 	 =

FH ), then the complexity reduction should be significant. To be specific, the following

features are helpful in reducing complexity:

1. P is a simple permutation matrix which doesn't require complex multiplications

or additions;

2.FHA  or F can be implemented with fast algorithm;

K. V is a diagonal matrix with its elements related to the DFT of vector woe, or

more specifically, {ak }kN 01 .

Complex multiplications and complex additions required for (5.16) are computed

as approximately KB 2 and KB 2 — 2B, respectively. Considering that F is a DFT

matrix and using FFT algorithm, the complexity is further reduced to y log2 B + B

complex multiplications and KB log 2 B complex additions.

LMMSEE Equation (5.19) requires the extra computation of

in comparison to (5.6).

1. FP involves permutation only. V. (FP) requires B 2 complex multiplications

and no extra calculations for PF HVH. Note also that the elements of V will be



5.3.3 Mean Square Error

For both MLE and LMMSEE, it is readily understood that LMMSEE would yield

better performance and the mean square errors (MSEs) of these two methods could be

found in [271. It is of interest to compare the performance of different implementation

techniques for phase noise mitigations, i.e., decorrelator and interference canceler,

with the same estimation errors.
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It is assumed that the estimate has the form .c. = A + e, where e denotes the

estimation error which is Gaussian distributed with zero mean and the normalized



ILterfereLAe AaLAeler In light of (5.1) and (5.26), the MSE is given by

78

where Es is the signal energy as defined in Chapter 1; matrix E is a circulate matrix

determined by the error vector e, and has the same form of (5.21). Following the

diagonalization method described in (5.2K), E is given by
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(5.28) holds for small to median phase noise level with its variance less than

1O -1 , which are the working range of these two estimation approaches. Therefore,

two mitigation techniques yield the same performance in practice with the same

estimation result. On the other hand, we notice that interference canceler is more cost

effective than decorrelator when complexity is of concern since decorrelator requires

the inversion of matrix.

5.4 NumeriAal Results

The proposed approaches are evaluated in this section for Rayleigh fading channels

by Monte Carlo trials. The OFDM data are constructed based on the IEEE 8O2.lla

standard. The preamble of each data block is specifically for channel estimation.

Channel coding is not used in our simulations since we focus on the symbol error rate

(SER) of an encoded OFDM system. 16QAM modulation is always the case if not

specifically indicated in the simulation. The length of cyclic prefix is assumed larger

than channel delay spread throughout the simulations. The simulation parameters

are summarized in Table 5.1.

Fig. 5.1-5.2 demonstrate the computational complexity needed for two phase

noise estimation methods, MLE and LMMSE. Ae see from this figure that, in order to

get the best performance from LMMSE, we need to trade computational complexity
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for that. As a result, LMMSE has the highest complexity among all schemes, even a

little worse than the conventional SCIC scheme give in [K6].

Fig. 5.K shows that when using the MLE method, what are the values of the

estimated CPE and ICI in comparison to the actual values. It clearly demonstrates

that phase noise mitigation is applicable only if phase noise variance is less than 1O -1 .

For large phase noise with its variance above 1O -1 , mitigation may not be effective

since the estimation errors become large. Note that the MLE method has the same

performance as SCIC, therefore their estimation results have the same accuracy.

Fig. 5.4-5.5 show the SER performance of the generalized MLE and LMMSE

approaches with phase noise variance equal to 1O -2 . It is shown that the proposed

approaches outperform conventional CPEC technique for both decorrelator and interference

canceler cases. For the LMMSE approach, a performance gain of 1-2 dB is observed

in comparison to the MLE approach. This is straightforward as the LMMSE uses the

phase noise statistics to minimize the overall estimation errors. Also, comparing Fig.

5.4 with Fig. 5.5, we can find that there is no obvious difference between decorrelator

and interference canceler. This fits our previous theoretical analysis with respect to

these two mitigation methods.

Fig. 5.6 illustrates the MSEs for both MLE and LMMSE using decorrelator.

Note that the similar curves are expected with interference canceler. Therefore, no

extra figures were drawn for the case of interference canceler. This figure suggests the

better performance with LMMSE approach as expected.

5.5 ConAlusioLs

Based on the same parametric model of OFDM signals for SCIC method, a received

frequency domain subcarrier signal is expressed as exactly the sum of all subcarrier

signals weighted by a parameter vector. In terms of this, we have proposed two

generalized approaches, using both the maximum likelihood (ML) and linear minimum



Figure 5.1 Complex multiplications needed for MLE and LMMSE
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Figure 5.2 Complex additions needed for MLE and LMMSE
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Figure 5.4 The SER performance of the proposed approaches using decorrelator
versus OPEC, with phase noise variance equal to 1O -2 , and the number of pilots equal
to 4.
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Figure 5.5 The SER performance of the proposed approaches using interference
canceler versus OPEC, with phase noise variance equal to 1O -2 , and the number of
pilots equal to 4.

Figure 5.6 Mean square error of LMMSE and MLE, using decorrelator.
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mean square error (LMMSE) techniques, to estimate this weighting vector. Phase

noise is therefore mitigated based on the subsequent estimates. Some mathematical

algorithm has also been proposed which effectively reduces the computational complexity

of these methods. It shows that conventional methods can be readily derived from

our approaches with some approximation or orthogonal transform. In this regard, the

conventional methods in the literature are just special cases of what we have proposed

in the paper. The data structure of this new model has further been analyzed and

the corresponding solutions have been provided to reduce computational complexity

for implementation purpose. Furthermore, it is indicated that we could use several

methods, including decorrelator and interference canceler, to mitigate phase noise

after the estimation results are obtained, and we could expect the same performance

from these two methods while interference canceler is more computationally efficient.

In order to analyze the difference between these estimation and mitigation

methods, theoretical analysis has been provided which was further verified by the

computer simulations. It is shown that the proposed approaches use a more general

and accurate model to estimate and mitigate phase noise. Therefore, better results

are expected with these approaches in comparison to conventional ones.



CHAPTER 6

PHASE NOISE MITIGATION FOR MIMO-OFDM

6.1 ILtroduAtioL

Multiple Input Multiple Output (MIMO) technique has emerged as one of the most

significant technical breakthroughs in wireless communications [K8] [K9] [4O]. One key

feature of MIMO systems, with multiple transmit and receive antennas, is the ability

to turn multipath propagation, which was conventionally detrimental to wireless

transmission, into a benefit for the user. MIMO systems can offer, through space

diversity [41] [42] [4K] or space multiplexing [44], substantial improvements over

conventional systems with respect to either bit error rate (BEK) performance or

capacity (transmission data rate).

Furthermore, the combined MIMO-OFDM approach has recently raised a lot

of interest as it appears to be quite suitable for future wireless broadband networks

by taking advantage of both OFDM and MIMO techniques. Therefore, similar to

OFDM, MIMO-OFDM might also suffer severe performance degradation from phase

noise. Even though various methods have been proposed to mitigate small phase

noise, they are specifically designed for single-antenna systems. To the best of the

authors' knowledge, there has not been, in the literature, any method proposed for

MIMO-OFDM phase noise mitigation. Motivated by this fact, we propose a new

scheme to mitigate phase noise for MIMO-OFDM.

The organization of this paper is as follows. In Section 6.2, the OFDM-MIMO

system model is introduced. In Section 6.K, we first specify the effects of phase noise

on MIMO-OFDM systems, and then propose a new scheme to eliminate the effects

of phase noise on MIMO-OFDM. Numerical results are presented in Section 6.4 to

illustrate the effectiveness of the proposed scheme. Section 6.5 concludes this paper.
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Figure 6.1 Block diagram of the MIMO-OFDM system with 2 Tx antennas and 2
Rx antennas.

6.2 MIMO-OFDM System Model

In a single-user MIMO-OFDM system with M transmit antennas and L receive

antennas, data are first space-time/space-frequency coded, and then fed into M

inverse DFT units each connected to one transmit antenna. After the insertion of

cyclic prefix, data is upconverted and transmitted through multipath fading environment.

At the base station, data is received by antenna 1 (1 = 1, 2, ..., L) and downconverted.

After removing the cyclic prefix and taking length-B DFT, data are forwarded to

decoding unit for detection.

A simply transmit diversity scheme was described [41] using orthogonal space-

time coding and later was extended into the space-frequency domain for MISO-OFDM

with 2x 1 (M = 2, L = 1) antennas [45]. In this paper, implementing the same space-

frequency diversity technique in [45], we consider the case of MIMO-OFDM with 2x 2

(M = 2, L = 2) antennas transmitting BPSK/QPSK modulated signals. The system

diagram is shown in Fig. 6.1.
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At the transmitter side, during the rth OFDM symbol period, the incoming

data stream is coded into two substreams for two transmit antennas, namely, X m

and X2,,,„ with

which implements the transmit diversity technique in [41] and [45].

At the receiver side, after DFT, we have two received symbols from two receive

antennas, namely, Br' and B,.2 , respectively, with

and hmi(k) denote the (k + 1)th element of

vector X'' as defined in (6.1) and the frequency-domain channel gain between the

mth transmit antenna and the lath receiver antenna respectively; n i (k) is the zero

mean AAGN noise with variance a -2 . In order to exploit transmit diversity using

combining technique, the space-frequency transmit diversity technique [45] requires

that the fading channel between adjacent subcarriers does not change much. This

condition holds in cases when channel coherent bandwidth is relatively large compared

with transmission bandwidth. Also, fading channel is assumed to be time invariant

within an OFDM symbol. The latter means small Doppler shift which is usually the

case especially with wide band MIMO-OFDM systems.

Aithout loss of generality, the kth (k = O, 1) frequency-domain subcarrier signals

are studied. The space-frequency decoding of the (O, 1)th frequency-domain subcarrier
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signals is simply given by maximum ratio combining (MRC) technique. In other

words, the decision criteria towards data detection are given by

where the space diversities provided by both transmit and receive antennas are

exploited by MKC. Note that, although the conclusions of (6.5) and (6.6) hold for

(O, 1)th subcarrier signals, the extension to the (2n, 2n + 1)th subcarrier signals is

quite straightforward (with 71 ranging from O to 2 — 1). Therefore, we omit the

details.

6.3 A New Phase Noise MitigatioL SAheme for MIMO-OFDM

6.3.1 The EffeAts of Phase Noise

The imperfect phase synchronization of both transmitter and receiver oscillators

causes random phase noise, which can be described as a continuous Brownian motion

process with zero mean and variance 270t, where 13 denotes the phase noise linewidth,

i.e., frequency spacing between K-dB points of its Lorentzian power spectral density
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function [9] [ll]. Phase noise destroys the orthogonalities among subcarrier signals

and causes system degradation. In the presence of phase noise, the expression of (6.4)

is subsequently modified to

6.3.2 Phase Noise MitigatioL

In order to handle phase noise for MI1V1O-OFDM systems, a new scheme is developed

in this paper to deal with this noise. Considering the high complexity of M1MO

systems, the new scheme aims to improve the performance in a simple yet effective

way. Note that MIMO-OFDM channel estimation with accurate results have been

discussed in the literatures [46] [47], therefore, without loss of generality, channel is

assumed known at the receiver.

Assume there are Bed pilot subcarrier signals (the pilot set is termed as S e ) for

phase noise mitigation. which are evenly distributed within an OFDM symbol for the

better estimation performance. Ae use a phase noise mitigation criterion to minimize

the overall square error between received signals and their true values at these pilot

positions, i.e.,
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After some algebraic manipulations, (6.8) gives rise to the solution for c (O),

namely

Note that the estimator of c (O) in (6.9) becomes more accurate with larger

number of pilots NN , but will lower spectral efficiency and make computational

complexity higher. In other words, there is a tradeoff between performance and

efficiency of computation and spectrum. It will be shown later that, due to space

diversity provided in MIMO systems, significant performance gain will be achieved

with few pilots for the proposed scheme. This makes this approach quite attractive

in practice.

After the estimation of CPE, the decision results in (6.5) and (6.6) are modified

to

6.4 NumeriAal Results

The proposed scheme is evaluated in this section for Rayleigh fading channels by

Monte Carlo trials. The OFDM data block is based on the IEEE 8O2.lla standard,

with 64 subcarriers for each OFDM symbol. Ae apply the space-frequency diversity
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Figure 6.2 SEK performance versus SNK, 2 Tx antennas and 2 Rx antennas, with
phase noise variance of 1O -2 , number of pilots BN equal to 4.

technique in [45] to our simulations, wherein QPSK modulation is used. The length

of cyclic prefix is taken to be larger than channel delay spread.

Fig. 6.2 shows the SER performance of the proposed scheme in comparison

to no-mitigation and no-phase-noise case. In this figure, even at small phase noise

variance level of 1O -2 , there is an obvious error floor on the SEK performance of

MIMO-OFDM systems when there is no correction. This error floor makes useless

the advantages of space and frequency diversities of MIMO and OFDM techniques,

and the performance is not acceptable in all SNRs. On the other hand, the proposed

scheme provides, as shown in Fig. 6.2, significant performance gain though with only

4 out of 64 subcarriers as pilots, and the performance stays close to no-phase-noise

case.

The working range of the proposed scheme is examined in Fig. 6.K which depicts

the SEK performance of the proposed scheme as a function of phase noise level. As

we discussed earlier, only small phase noise mitigation is needed as it is very common

in practice. Therefore, it is concluded from Fig. 6.K that, the proposed scheme



Figure 6.3 SEK performance versus phase noise variance levels, 2 Tx antennas and
2 Kx antennas with SNK equal to 2OdB, number of pilots Nee equal to 4

Figure 6.4 SER performance of the proposed scheme when number of pilots
changes, with 2 Tx antenna and 2 Kx antennas at the phase noise level of 1O -2

(phase noise variance)



93

would be sufficient. It is not difficult to see how worse the performance is without

mitigation as phase noise becomes larger. However, the proposed scheme performs

well in recovering the phase-noise-corrupted signals with small phase noise variance

of 1O -i or less. This figure also illustrates that, with phase noise variance of 1O -3 or

less (a very accurate oscillator), sufficient performance of M1MO-OFDM systems is

guaranteed with extra mitigation.

The number of pilots needed is also important as it depicts compromise between

performance and efficiency. Fig. 6.4 demonstrates how the performance of the

proposed scheme is related to number of pilots. Ae conclude that,

1. Number of pilots Nee = 1 suggests performance loss up to 6dB (say, SEK=1O

which, in many case, is certainly intolerable;

2. Increasing number of pilots by only one, i.e., Bed = 2, brings 5dB extra performance

improvement over the case with Bed = l. This performance improvement is quite

necessary for practical systems;

3. Increasing number of pilots to B ed = 4, adds up to 2dB performance improvement

(say, SER=1O over the case with Nee = 2;

4. Increasing number of pilots to Bp = 8, brings less than ldB performance

improvement over the case with B ed = 4;

5. Aith number of pilots Nee = 16 or K2, performance improvement is basely shown

over the case with Bed = 8. Therefore, using number of pilots greater than 8 is

not justified.

In summary, Fig. 6.4 implies that, for a 64-subcarrier OFDM-system with 2

transmit and 2 receive antennas, choosing number of pilot equal to 4 gives sufficient

performance with very high spectral efficiency (4/64=6.25% transmission bandwidth

for pilots) and relatively low computational complexity.
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6.5 ConAlusioLs

MIMO-OFDM, has become attractive for future high rate wireless communications

over multipath fading environment since it takes advantages of space-frequency diversity

provided by MIMO and OFDM techniques, and exhibits robustness against channel

frequency selectivity. However, OFDM is very sensitive to phase noise, as it has

been shown in the literature that even small phase noise causes severe performance

degradation of OFDM.

Motivated by past work for phase noise mitigation in single-antenna OFDM

systems, a new scheme is developed in this paper to deal with phase noise effects

on NIIMO-OFDM. The proposed scheme provides significant performance gains over

a conventional system without such mitigation. Numerical results have shown the

effectiveness of the proposed when dealing with phase noise. Furthermore, the proposed

scheme requires very small number of pilots to guarantee a sufficient performance gain,

and also provides a quite simple structure, which makes it very attractive for practical

implementation



CHAPTER 7

SUMMARB

OFDM, which has been very attractive for future high rate wireless communications,

is very robust to channel multipath fading effect while providing high transmission

data rate with high spectral efficiency. One drawback of OFDM is its sensitivity

to phase noise, a random process caused by the fluctuation of the receiver and

transmitter oscillators. Phase noise causes leakage of DFT which subsequently destroys

the orthogonalities among subcarrier signals, leading to the significant performance

degradation.

Ae have presented the OFDM performance analysis in the presence of phase

noise in both single-user and multiple access environments. For single-user case, we

provide exact closed-form expression of signal to interference plus noise ratio (SINK),

while for multi-user case, a closed-form BEK expression has been derived with BPSK

modulation. With the understandings of phase noise effects, several methods, such

as phase noise suppression (PNS) and simultaneous CPE and ICI correction (SCIC),

have also been proposed to mitigate both single and multiple phase noise. Numerical

results are provided to demonstrate the effectiveness of the proposed methods. To

further extend our work, we proposed two general approaches to estimate phase noise

parameters. It proves that the conventional approaches, either in the time domain, or

in the frequency domain, can be readily obtained from our new methods with some

simple approximation or orthogonal transform. Furthermore, a particular algorithm

has been proposed which significantly reduces the computational complexity of the

proposed methods. After the phase noise parameters are estimated, we further discuss

different implementation methods for phase noise mitigation. Numerical results are

also provided to illustrate the effectiveness of the proposed schemes.
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Similar to OFDM, an OFDM with multiple antennas, i.e., Multiple Input Multiple

Output (MIM0)-OFDM might also suffer severe performance degradation from phase

noise, and what have been proposed may not be applicable to MIMO-OFDM. Therefore,

we propose a new scheme to mitigate phase noise for MIMO-OFDM. The proposed

scheme provides significant performance gains over a conventional system without

phase noise mitigation. Numerical results have shown the effectiveness of phase noise

mitigation when dealing with phase noise. Furthermore, the proposed scheme requires

a very small number of pilots and thus provides high spectrum efficiency. Hence,

adequate performance is achieved with a quite simple structure which makes it very

attractive for practical implementations.

In summary, we have not only analyzed the performance of OFDM systems

in the presence of phase noise, but also proposed the corresponding solutions to

the impairments of phase noise on OFDM systems. Ae have considered OFDM

systems with both single-access and multiple access mechanisms. We further consider

the phase noise mitigation in multiple-antenna systems, i.e., MIMO-OFDM systems.

Some mathematical algorithms have been developed in our dissertation work to reduce

the complexities of the proposed methods, the proposed methods successfully achieve

outstanding performance with relatively low complexity, and are thus suitable for

practical applications.



APPENDIX A

ENERGY OF PHASE NOISE COMPONENTS CM (P)

The derivation of the energy of co (p) is quite crucial for the exact SINR expression.

From (2.K), the energy of Co (p) can be written as
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Equation (A.4), which gives the solution to the term E [deign 4] in (A.K), therefore

gives rise to
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deb into (A.5) yields

E [I cm(p)12
1 Nib- n-0 	 N-2 N-0

-
B2 	d

eli + E E (d.,
19)

i_n +B
n=0 i=0 n=0 i=n+0 "

=

N-0 	 N-0

= -- 2- EnSN— + E n (c1;) N n --1- B	B - 	 }
{

n=0

1 

n=0
N 	 N

1
= -

N2
 {E di  van + E n (CC) N-n - N}

n=0 n=0

= -1)2 Re (E ndNan) — B}

	

B2 	

N

where Re(.) indicates the real part of a complex variable. It can be shown that

v■N 4+1 a(N+0)dp+N
—L-„in=0 1`n3 (4-0)2 , which, when substituted into (A.6), gives the closed-

form expression of the energy of the phase noise components co (p), namely
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(A.5)

(A.6)
n=0

E [I Cm(13 )1 2 ]

= —1 
{2 Re 

(4 1-0 — (N + l)Se + B) B }
B2 	(Sea — 1) 2

(A.7)
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SMALL PHASE NOISE APPROXIMATION
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Note that fib is defined in [9] as one-sided phase noise linewidth whereas in Section

l.2.2 of our paper /3 denotes two-sided linewidth. Taking this into consideration, the

result of (B.4) is exactly the same as that derived in [9].

For small phase noise and large number of subcarriers N, by approximating



ETHIC m(k)121

= Ex 	- E [lc, (O)11}

R-13'Nex

KR
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(B.7)



APPENDIX C

DIAGONALIZATION OF A SHIFT-BACKWARD MATRIX

It can be readily learned from (5.l) that, the shift-backward circulant matrix W is

uniquely determined by its first row elements
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A is a unitary matrix which indicates the operation of backward shift permutation.

It is readily shown that A can be diagonalized by
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