3,520 research outputs found

    On the Performance of Channel Assembling and Fragmentation in Cognitive Radio Networks

    Full text link
    [EN] Flexible channel allocation may be applied to multi-channel cognitive radio networks (CRNs) through either channel assembling (CA) or channel fragmentation (CF). While CA allows one secondary user (SU) occupy multiple channels when primary users (PUs) are absent, CF provides finer granularity for channel occupancy by allocating a portion of one channel to an SU flow. In this paper, we investigate the impact of CF together with CA for SU flows by proposing a channel access strategy which activates both CF and CA and correspondingly evaluating its performance. In addition, we also consider a novel scenario where CA is enabled for PU flows. The performance evaluation is conducted based on continuous time Markov chain (CTMC) modeling and simulations. Through mathematical analyses and simulation results, we demonstrate that higher system capacity can be achieved indeed by jointly employing both CA and CF, in comparison with the CA-only strategies. However, this benefit is obtained only under certain conditions which are pointed out in this paper. Furthermore, the theoretical capacity upper bound for SU flows with both CF and CA enabled is derived when PU activities are relatively static compared with SU flows.This work was supported by the EU Seventh Framework Programme FP7-PEOPLE-IRSES under Grant agreement 247083, project acronym S2EuNet. The work of L. Jiao was supported by the Research Council of Norway through the ECO-boat MOL project under Grant 210426. The work of V. Pla was supported in part by the Ministry of Economy and Competitiveness of Spain under Grant TIN2010-21378-C02-02. The associate editor coordinating the review of this paper and approving it for publication was H. Wymeersch.Jiao, L.; Balapuwaduge, IAM.; Li, FY.; Pla, V. (2014). On the Performance of Channel Assembling and Fragmentation in Cognitive Radio Networks. IEEE Transactions on Wireless Communications. 13(10):5661-5675. https://doi.org/10.1109/TWC.2014.2322057S56615675131

    Integrating Two Feedback Queuing Discipline into Cognitive Radio Channel Aggregation

    Get PDF
    Queuing regime is one outstanding approach inimproving channel aggregation. If well designed and incorporatedwith carefully selected parameters, it enhances the smoothrollout of fifth/next generation wireless networks. While channelaggregation is the merging of scattered TV white space (spectrumholes) into one usable chunk for secondary users (SU). Thequeuing regime ensures that these unlicensed users (SUs) traffic/services are not interrupted permanently (blocked/dropped orforced to terminate) in the event of the licensed users (primaryuser) arrival. However, SUs are not identical in terms of trafficclass and bandwidth consumption hence, they are classified asreal time and non-real time SU respectively. Several of thesestrategies have been studied considering queuing regime with asingle feedback queuing discipline. In furtherance to previousproposed work with single feedback queuing regime, this paperproposes, develops and compares channel aggregation policieswith two feedback queuing regimes for the different classes ofSUs. The investigation aims at identifying the impacts of the twofeedbackqueuing regime on the performance of the secondarynetwork such that any SU that has not completed its ongoingservice are queued in their respective buffers. The performance isevaluated through a simulation framework. The results validatethat with a well-designed queuing regime, capacity, access andother indices are improved with significant decrease in blockingand forced termination probabilities respectively

    Channel assembling and resource allocation in multichannel spectrum sharing wireless networks

    Get PDF
    Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy (Ph.D.) in Engineering, in the School of Electrical and Information Engineering, Faculty of Engineering and the Built Environment, at the University of the Witwatersrand, Johannesburg, South Africa, 2017The continuous evolution of wireless communications technologies has increasingly imposed a burden on the use of radio spectrum. Due to the proliferation of new wireless networks applications and services, the radio spectrum is getting saturated and becoming a limited resource. To a large extent, spectrum scarcity may be a result of deficient spectrum allocation and management policies, rather than of the physical shortage of radio frequencies. The conventional static spectrum allocation has been found to be ineffective, leading to overcrowding and inefficient use. Cognitive radio (CR) has therefore emerged as an enabling technology that facilitates dynamic spectrum access (DSA), with a great potential to address the issue of spectrum scarcity and inefficient use. However, provisioning of reliable and robust communication with seamless operation in cognitive radio networks (CRNs) is a challenging task. The underlying challenges include development of non-intrusive dynamic resource allocation (DRA) and optimization techniques. The main focus of this thesis is development of adaptive channel assembling (ChA) and DRA schemes, with the aim to maximize performance of secondary user (SU) nodes in CRNs, without degrading performance of primary user (PU) nodes in a primary network (PN). The key objectives are therefore four-fold. Firstly, to optimize ChA and DRA schemes in overlay CRNs. Secondly, to develop analytical models for quantifying performance of ChA schemes over fading channels in overlay CRNs. Thirdly, to extend the overlay ChA schemes into hybrid overlay and underlay architectures, subject to power control and interference mitigation; and finally, to extend the adaptive ChA and DRA schemes for multiuser multichannel access CRNs. Performance analysis and evaluation of the developed ChA and DRA is presented, mainly through extensive simulations and analytical models. Further, the cross validation has been performed between simulations and analytical results to confirm the accuracy and preciseness of the novel analytical models developed in this thesis. In general, the presented results demonstrate improved performance of SU nodes in terms of capacity, collision probability, outage probability and forced termination probability when employing the adaptive ChA and DRA in CRNs.CK201

    Channel assembling policies for heterogeneous fifth generation (5G) cognitive radio networks.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban 2016.Abstract available in PDF file

    Dynamic Flow-Adaptive Spectrum Leasing with Channel Aggregation in Cognitive Radio Networks

    Get PDF
    Cognitive radio networks (CRNs), which allow secondary users (SUs) to dynamically access a network without affecting the primary users (PUs), have been widely regarded as an effective approach to mitigate the shortage of spectrum resources and the inefficiency of spectrum utilization. However, the SUs suffer from frequent spectrum handoffs and transmission limitations. In this paper, considering the quality of service (QoS) requirements of PUs and SUs, we propose a novel dynamic flow-adaptive spectrum leasing with channel aggregation. Specifically, we design an adaptive leasing algorithm, which adaptively adjusts the portion of leased channels based on the number of ongoing and buffered PU flows. Furthermore, in the leased spectrum band, the SU flows with access priority employ dynamic spectrum access of channel aggregation, which enables one flow to occupy multiple channels for transmission in a dynamically changing environment. For performance evaluation, the continuous time Markov chain (CTMC) is developed to model our proposed strategy and conduct theoretical analyses. Numerical results demonstrate that the proposed strategy effectively improves the spectrum utilization and network capacity, while significantly reducing the forced termination probability and blocking probability of SU flows.publishedVersio

    Performance analysis of wireless networks based on time-scale separation: A new iterative method

    Full text link
    The complexity of modern communication networks makes the solution of the Markov chains that model their traffic dynamics, and therefore, the determination of their performance parameters, computationally costly. However, a common characteristic of these networks is that they manage multiple types of traffic flows operating at different time-scales. This time-scale separation can be exploited to substantially reduce the computational cost. Following this approach, we propose a novel solution method named Absorbing Markov Chains Approximation (AMCA) based on the transient regime analysis. Briefly, we model the time the system spends in a series of subsets of states by a phase-type distribution and, for each of them, determine the probabilities of finding the system in each state of this subset until absorption. We compare the AMCA performance to that obtained by classical methods and by a recently proposed approach that aims at generalizing the conventional quasi-stationary approximation. We find that AMCA has a more predictable behavior, is applicable to a wider range of time-scale separations, and achieves higher accuracy for a given computational cost.This research has been supported in part by the Ministry of Economy and Competitiveness of Spain under Grants TIN2013-47272-C2-1-R and TEC2015-71932-REDT. The research of L. Tello-Oquendo was supported in part by Programa de Ayudas de Investigacion y Desarrollo (PAID) of the Universitat Politecnica de Valencia.Tello Oquendo, LP.; Pla, V.; Martínez Bauset, J.; Casares Giner, V. (2016). Performance analysis of wireless networks based on time-scale separation: A new iterative method. Computer Communications. 86:40-48. https://doi.org/10.1016/j.comcom.2016.04.004S40488

    Dynamic Spectrum Reservation for CR Networks in the Presence of Channel Failures: Channel Allocation and Reliability Analysis

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] Providing channel access opportunities for new service requests and guaranteeing continuous connections for ongoing flows until service completion are two challenges for service provisioning in wireless networks. Channel failures, which are typically caused by hardware and software failures or/and by intrinsic instability in radio transmissions, can easily result in network performance degradation. In cognitive radio networks (CRNs), secondary transmissions are inherently vulnerable to connection breaks due to licensed users' arrivals as well as channel failures. To explore the advantages of channel reservation on performance improvement in error-prone channels, we propose and analyze a dynamic channel reservation (DCR) algorithm and a dynamic spectrum access (DSA) scheme with three access privilege variations. The key idea of the DCR algorithm is to reserve a dynamically adjustable number of channels for the interrupted services to maintain service retainability for ongoing users or to enhance channel availability for new users. Furthermore, the DCR algorithm is embedded in the DSA scheme enabling spectrum access of primary and secondary users with different access privileges based on access flexibility for licensed shared access. The performance of such a CRN in the presence of homogeneous and heterogeneous channel failures is investigated considering different channel failure and repair rates.The work of V. Pla was supported by the Spanish Ministry of Economy, Industry and Competitiveness under Grant TIN2013-47272-C2-1-R.Balapuwaduge, IAM.; Li, F.; Pla, V. (2018). Dynamic Spectrum Reservation for CR Networks in the Presence of Channel Failures: Channel Allocation and Reliability Analysis. IEEE Transactions on Wireless Communications. 17(2):882-898. https://doi.org/10.1109/TWC.2017.2772240S88289817

    System Times and Channel Availability for Secondary Transmissions in CRNs: A Dependability Theory based Analysis

    Full text link
    [EN] Reliability is of fundamental importance for the performance of secondary networks in cognitive radio networks (CRNs). To date, most studies have focused on predicting reliability parameters based on prior statistics of traffic patterns from user behavior. In this paper, we define a few reliability metrics for channel access in multichannel CRNs that are analogous to the concepts of reliability and availability in classical dependability theory. Continuous-time Markov chains are employed to model channel available and unavailable time intervals based on channel occupancy status. The impact on user access opportunities based on channel availability is investigated by analyzing the steady-state channel availability and several system times such as mean channel available time and mean time to first channel unavailability. Moreover, the complementary cumulative distribution function for channel availability is derived by applying the uniformization method, and it is evaluated as a measure of guaranteed availability for channel access by secondary users. The precision and the correctness of the derived analytical models are validated through discrete-event-based simulations. We believe that the reliability metric definitions and the analytical models proposed in this paper have their significance for reliability and availability analysis in CRNs.The work of V. Pla was supported by the Ministry of Economy and Competitiveness of Spain under Grant TIN2013-47272-C2-1-R. The review of this paper was coordinated by Dr. B. Canberk.Balapuwaduge, IAM.; Li, FY.; Pla, V. (2017). System Times and Channel Availability for Secondary Transmissions in CRNs: A Dependability Theory based Analysis. IEEE Transactions on Vehicular Technology. 66(3):2771-2788. https://doi.org/10.1109/TVT.2016.2585200S2771278866

    Channel Access and Reliability Performance in Cognitive Radio Networks:Modeling and Performance Analysis

    Get PDF
    Doktorgradsavhandling ved Institutt for Informasjons- og kommunikasjonsteknologi, Universitetet i AgderAccording to the facts and figures published by the international telecommunication union (ITU) regarding information and communication technology (ICT) industry, it is estimated that over 3.2 billion people have access to the Internet in 2015 [1]. Since 2000, this number has been octupled. Meanwhile, by the end of 2015, there were more than 7 billion mobile cellular subscriptions in the world, corresponding to a penetration rate of 97%. As the most dynamic segment in ICT, mobile communication is providing Internet services and consequently the mobile broadband penetration rate has reached 47% globally. Accordingly, capacity, throughput, reliability, service quality and resource availability of wireless services become essential factors for future mobile and wireless communications. Essentially, all these wireless technologies, standards, services and allocation policies rely on one common natural resource, i.e., radio spectrum. Radio spectrum spans over the electromagnetic frequencies between 3 kHz and 300 GHz. Existing radio spectrum access techniques are based on the fixed allocation of radio resources. These methods with fixed assigned bandwidth for exclusive usage of licensed users are often not efficient since most of the spectrum bands are under-utilized, either/both in the space domain or/and in the time domain. In reality, it is observed that many spectrum bands are largely un-occupied in many places [2], [3]. For instance, the spectrum bands which are exclusively allocated for TV broadcasting services in USA remain un-occupied from midnight to early morning according to the real-life measurement performed in [4]. In addition to the wastage of radio resources, spectrum under-utilization constraints spectrum availability for other intended users. Furthermore, legacy fixed spectrum allocation techniques are not capable of adapting to the changes and interactions in the system, leading to degraded network performance. Unlike in the static spectrum allocation, a fraction of the radio spectrum is allocated for open access as license-free bands, e.g., the industrial, scientific and medical (ISM) bands (902-928, 2400-2483.5, 5725-5850 MHz). In 1985, the federal communications commission (FCC) permitted to use the ISM bands for private and unlicensed occupancy, however, under certain restrictions on transmission power [5]. Consequently, standards like IEEE 802.11 for wireless local area networks (WLANs) and IEEE 802.15 for wireless personal area networks (WPAN) have grown rapidly with open access spectrum policies in the 2.4 GHz and 5 GHz ISM bands. With the co-existence of both similar and dissimilar radio technologies, 802.11 networks face challenges for providing satisfactory quality of service (QoS). This and the above mentioned spectrum under-utilization issues motivate the spectrum regulatory bodies to rethink about more flexible spectrum access for licenseexempt users or more efficient radio spectrum management. Cognitive radio (CR) is probably the most promising technology for achieving efficient spectrum utilization in future wireless networks
    corecore